Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Rampf, Sarah [VerfasserIn]   i
 Gehrig, Holger [VerfasserIn]   i
 Möltner, Andreas [VerfasserIn]   i
 Fischer, Martin R. [VerfasserIn]   i
 Schwendicke, Falk [VerfasserIn]   i
 Huth, Karin C. [VerfasserIn]   i
Titel:Radiographical diagnostic competences of dental students using various feedback methods and integrating an artificial intelligence application
Titelzusatz:a randomized clinical trial
Verf.angabe:Sarah Rampf, Holger Gehrig, Andreas Möltner, Martin R. Fischer, Falk Schwendicke, Karin C. Huth
E-Jahr:2024
Jahr:November 2024
Umfang:13 S.
Fussnoten:Gesehen am 29.11.2024
Titel Quelle:Enthalten in: European journal of dental education
Ort Quelle:Oxford [u.a.] : Wiley-Blackwell, 1997
Jahr Quelle:2024
Band/Heft Quelle:28(2024), 4 vom: Nov., Seite 925-937
ISSN Quelle:1600-0579
Abstract:Introduction Radiographic diagnostic competences are a primary focus of dental education. This study assessed two feedback methods to enhance learning outcomes and explored the feasibility of artificial intelligence (AI) to support education. Materials and Methods Fourth-year dental students had access to 16 virtual radiological example cases for 8 weeks. They were randomly assigned to either elaborated feedback (eF) or knowledge of results feedback (KOR) based on expert consensus. Students´ diagnostic competences were tested on bitewing/periapical radiographs for detection of caries, apical periodontitis, accuracy for all radiological findings and image quality. We additionally assessed the accuracy of an AI system (dentalXrai Pro 3.0), where applicable. Data were analysed descriptively and using ROC analysis (accuracy, sensitivity, specificity, AUC). Groups were compared with Welch's t-test. Results Among 55 students, the eF group by large performed significantly better than the KOR group in detecting enamel caries (accuracy 0.840 ± 0.041, p = .196; sensitivity 0.638 ± 0.204, p = .037; specificity 0.859 ± 0.050, p = .410; ROC AUC 0.748 ± 0.094, p = .020), apical periodontitis (accuracy 0.813 ± 0.095, p = .011; sensitivity 0.476 ± 0.230, p = .003; specificity 0.914 ± 0.108, p = .292; ROC AUC 0.695 ± 0.123, p = .001) and in assessing the image quality of periapical images (p = .031). No significant differences were observed for the other outcomes. The AI showed almost perfect diagnostic performance (enamel caries: accuracy 0.964, sensitivity 0.857, specificity 0.074; dentin caries: accuracy 0.988, sensitivity 0.941, specificity 1.0; overall: accuracy 0.976, sensitivity 0.958, specificity 0.983). Conclusion Elaborated feedback can improve student's radiographic diagnostic competences, particularly in detecting enamel caries and apical periodontitis. Using an AI may constitute an alternative to expert labelling of radiographs.
DOI:doi:10.1111/eje.13028
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1111/eje.13028
 kostenfrei: Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1111/eje.13028
 DOI: https://doi.org/10.1111/eje.13028
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:artificial intelligence
 dental education
 diagnostic competences
 feedback
 radiographic diagnostics
K10plus-PPN:1909912913
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69278161   QR-Code
zum Seitenanfang