Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Martins, Juliana Cristina [VerfasserIn]   i
 Maier, Joscha [VerfasserIn]   i
 Gianoli, Chiara [VerfasserIn]   i
 Neppl, Sebastian [VerfasserIn]   i
 Dedes, George [VerfasserIn]   i
 Alhazmi, Abdulaziz [VerfasserIn]   i
 Veloza, Stella [VerfasserIn]   i
 Reiner, Michael [VerfasserIn]   i
 Belka, Claus [VerfasserIn]   i
 Kachelrieß, Marc [VerfasserIn]   i
 Parodi, Katia [VerfasserIn]   i
Titel:Towards real-time EPID-based 3D in vivo dosimetry for IMRT with deep neural networks
Titelzusatz:a feasibility study
Verf.angabe:Juliana Cristina Martins, Joscha Maier, Chiara Gianoli, Sebastian Neppl, George Dedes, Abdulaziz Alhazmi, Stella Veloza, Michael Reiner, Claus Belka, Marc Kachelrieß, Katia Parodi
E-Jahr:2023
Jahr:4 October 2023
Umfang:9 S.
Illustrationen:Illustrationen, Diagramme
Fussnoten:Gesehen am 29.11.2024
Titel Quelle:Enthalten in: Physica medica
Ort Quelle:Amsterdam : Elsevier, 1996
Jahr Quelle:2023
Band/Heft Quelle:114(2023) vom: Okt., Artikel-ID 103148, Seite 1-9
ISSN Quelle:1724-191X
Abstract:We investigate the potential of the Deep Dose Estimate (DDE) neural network to predict 3D dose distributions inside patients with Monte Carlo (MC) accuracy, based on transmitted EPID signals and patient CTs. The network was trained using as input patient CTs and first-order dose approximations (FOD). Accurate dose distributions (ADD) simulated with MC were given as training targets. 83 pelvic CTs were used to simulate ADDs and respective EPID signals for subfields of prostate IMRT plans (gantry at 0∘). FODs were produced as backprojections from the EPID signals. 581 ADD-FOD sets were produced and divided into training and test sets. An additional dataset simulated with gantry at 90∘ (lateral set) was used for evaluating the performance of the DDE at different beam directions. The quality of the FODs and DDE-predicted dose distributions (DDEP) with respect to ADDs, from the test and lateral sets, was evaluated with gamma analysis (3%,2 mm). The passing rates between FODs and ADDs were as low as 46%, while for DDEPs the passing rates were above 97% for the test set. Meaningful improvements were also observed for the lateral set. The high passing rates for DDEPs indicate that the DDE is able to convert FODs into ADDs. Moreover, the trained DDE predicts the dose inside a patient CT within 0.6 s/subfield (GPU), in contrast to 14 h needed for MC (CPU-cluster). 3D in vivo dose distributions due to clinical patient irradiation can be obtained within seconds, with MC-like accuracy, potentially paving the way towards real-time EPID-based in vivo dosimetry.
DOI:doi:10.1016/j.ejmp.2023.103148
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.ejmp.2023.103148
 Volltext: https://www.sciencedirect.com/science/article/pii/S1120179723001758
 DOI: https://doi.org/10.1016/j.ejmp.2023.103148
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Deep Neural Networks
 EPID
 In vivo dosimetry
 Monte Carlo
 Radiotherapy
K10plus-PPN:190991522X
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69278208   QR-Code
zum Seitenanfang