Navigation überspringen
Universitätsbibliothek Heidelberg
Status: bestellen
> Bestellen/Vormerken
Signatur: UBN/UK 1200 C315   QR-Code
Standort: Zweigstelle Neuenheim / Freihandbereich Monograph  3D-Plan
Exemplare: siehe unten
Verfasst von:Carretero-González, Ricardo [VerfasserIn]   i
 Frantzeskakis, Dimitri J. [VerfasserIn]   i
 Kevrekidis, Panayotis G. [VerfasserIn]   i
Titel:Nonlinear waves & Hamiltonian systems
Titelzusatz:from one to many degrees of freedom, from discrete to continuum
Verf.angabe:R. Carretero-González (San Diego State University), Dimitrios Frantzeskakis (National and Kapodistrian University of Athens), P.G. Kevrekidis (University of Massachusetts, Amherst MA)
Verlagsort:Oxford
Verlag:Oxford University Press
E-Jahr:2024
Jahr:[2024]
Umfang:xx, 538 Seiten
Illustrationen:Illustrationen, Diagramme
Fussnoten:Literaturverzeichnis: Seite 524-534
ISBN:978-0-19-284323-4
 978-0-19-284324-1
Abstract:The aim of this book is to provide a self-contained introduction to the continuously developing field of nonlinear waves, that offers the background, the basic ideas and mathematical, as well as computational methods, while also presenting an overview of associated physical applications.
 Cover -- Title page -- Copyright page -- Preface -- Acknowledgments -- Contents -- PART I INTRODUCTION AND MOTIVATION OF MODELS -- 1 Introduction and Motivation -- 1.1 Few degrees of freedom -- A linear example: Hooke's law -- A nonlinear example: the pendulum -- 1.2 Many degrees of freedom -- 1.3 A nonlinear variant: the FPUT lattice -- Exercises -- 2 Linear Dispersive Wave Equations -- 2.1 Dispersion relations and relevant notions -- 2.2 Examples of linear dispersive wave equations -- The transport (unidirectional wave) equation -- The (bidirectional) wave equation -- The linear Schrödinger equation -- 2.3 Wavepackets and group velocity -- 2.4 Dissipation, instability, and diffusion -- Exercises -- 3 Nonlinear Dispersive Wave Equations -- 3.1 Dispersion relations, linear and nonlinear equations -- 3.2 Unidirectional propagation: KdV, KP, and NLS -- The Korteweg-de Vries (KdV) equation -- Other versions of the KdV model -- The Kadomtsev-Petviashvili (KP) equation -- The nonlinear Schrödinger equation -- 3.3 Bidirectional propagation: KG and Boussinesq -- The Klein-Gordon equation -- The Boussinesq equation -- Exercises -- PART II KORTEWEG-DE VRIES (KDV) EQUATION -- 4 The Korteweg-de Vries (KdV) Equation -- 4.1 Obtaining KdV as a limit of FPUT -- 4.2 Obtaining KdV for shallow water waves -- 4.3 The effects of dispersion and nonlinearity -- The effect of dispersion - linearized KdV equation -- The effect of nonlinearity - Hopf equation, method of characteristics and shock waves -- 4.4 Putting it all together: the Zabusky-Kruskal numerical experiments -- 4.5 A cute twist: conservation laws -- Exercises -- 5 From Boussinesq to KdV - Boussinesq Solitons as KdV Solitons -- 5.1 Boussinesq to a single KdV (right-going waves) -- 5.2 Boussinesq to a KdV pair (right- and left-going waves) -- 5.3 Connecting the Boussinesq soliton with the KdV soliton.
URL:Inhaltsverzeichnis: https://www.gbv.de/dms/tib-ub-hannover/1909065749.pdf
Sprache:eng
RVK-Notation:UK 1200   i
K10plus-PPN:1909065749
Exemplare:

SignaturQRStandortStatus
UBN/UK 1200 C315QR-CodeZweigstelle Neuenheim / Freihandbereich Monographien3D-Planbestellbar
Mediennummer: 10735629

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69278591   QR-Code
zum Seitenanfang