Standort: ---
Exemplare:
---
| Online-Ressource |
Titel: | Polars for data science |
Titelzusatz: | tackling real-world data challenges |
Mitwirkende: | Feifke, Ben [MitwirkendeR]  |
Institutionen: | O'Reilly (Firm), [Verlag]  |
Ausgabe: | [First edition]. |
Verlagsort: | [Sebastopol, California] |
Verlag: | O'Reilly Media, Inc. |
E-Jahr: | 2024 |
Jahr: | [2024] |
Umfang: | 1 online resource (1 video file (3 hr., 36 min.)) |
Illustrationen: | sound, color. |
Fussnoten: | Online resource; title from title details screen (O’Reilly, viewed November 18, 2024) |
Abstract: | Unlock the full potential of your data workflow with “Polars for Data Science”! In today's rapidly evolving data-landscape, efficiency and flexibility are paramount; take this course to find out exactly why Polars is essential for the modern data practitioner. Through hands-on exercises, you'll learn to seamlessly replace Pandas with Polars, harnessing its speed and versatility to clean and manipulate data of all types. From basic operations to advanced techniques, you'll master everything from filtering and sorting, to aggregation and joining across various data types, including numeric, string, array, and datetime data. Delve into Polars's innovative expression API and explore its streaming and in-memory capabilities. Moreover, our course doesn't just stop at data manipulation—we guide you through a practical data science use-case, integrating Polars with your favorite visualization tools and with training machine learning models. |
URL: | Aggregator: https://learning.oreilly.com/library/view/-/0642572019327/?ar |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Instructional films |
| Nonfiction films |
| Internet videos |
K10plus-PPN: | 1910496189 |
|
|
| |
Lokale URL UB: | Zum Volltext |
|
|
| Bibliothek der Medizinischen Fakultät Mannheim der Universität Heidelberg |
| Bestellen/Vormerken für Benutzer des Klinikums Mannheim Eigene Kennung erforderlich |
Bibliothek/Idn: | UW / m4629540822 |
Lokale URL Inst.: | Zum Volltext |
Polars for data science / Feifke, Ben [MitwirkendeR]; [2024] (Online-Ressource)
69278966