Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Titel:Engineering performant and trustworthy AI solutions
Titelzusatz:ensuring AI product quality and reliability
Mitwirkende:Mohanna, Ammar [MitwirkendeR]   i
Institutionen:O'Reilly (Firm), [Verlag]   i
Ausgabe:[First edition].
Verlagsort:[Sebastopol, California]
Verlag:O'Reilly Media, Inc.
E-Jahr:2024
Jahr:[2024]
Umfang:1 online resource (1 video file (2 hr., 27 min.))
Illustrationen:sound, color.
Fussnoten:Online resource; title from title details screen (O’Reilly, viewed October 28, 2024)
Abstract:This course focuses on the unique challenges and methodologies involved in testing and validating AI and machine learning models. It provides a comprehensive understanding of the paradigms and practices essential for assuring the quality and reliability of AI-powered products. The course covers the technical, practical, and business perspectives of AI QA, offering participants the tools and knowledge needed to enhance their AI development processes. As AI technologies become increasingly integral to various industries, ensuring their reliability and performance is crucial. Quality assurance in AI is not just about verifying accuracy but also about addressing issues like data quality, algorithmic bias, and model explainability. For AI developers, engineers, and QA professionals, mastering these aspects is vital to delivering robust, market-ready AI solutions that meet business objectives and user expectations. This course addresses the specific challenges of testing AI systems, including handling non-deterministic outputs, managing data biases, and ensuring continuous learning and adaptation. It provides practical solutions for integrating QA processes into the AI development lifecycle, helping professionals mitigate risks, enhance model performance, and maintain ongoing reliability. By understanding and applying effective QA strategies, participants can overcome common obstacles in AI projects, ultimately leading to more successful deployments.
URL:Aggregator: https://learning.oreilly.com/library/view/-/0642572060008/?ar
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Intelligence artificielle ; Qualité ; Contrôle
 Apprentissage automatique ; Évaluation
 Instructional films
 Nonfiction films
 Internet videos
 Films de formation
 Films autres que de fiction
 Vidéos sur Internet
K10plus-PPN:1910507660
 
 
Lokale URL UB: Zum Volltext
 
 Bibliothek der Medizinischen Fakultät Mannheim der Universität Heidelberg
 Klinikum MA Bestellen/Vormerken für Benutzer des Klinikums Mannheim
Eigene Kennung erforderlich
Bibliothek/Idn:UW / m4629551190
Lokale URL Inst.: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69279076   QR-Code
zum Seitenanfang