Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Yan, Ruqiang [VerfasserIn]   i
 Zhao, Zhibin [VerfasserIn]   i
Titel:Deep neural networks-enabled intelligent fault diagnosis of mechanical systems
Verf.angabe:Ruqiang Yan and Zhibin Zhao
Ausgabe:First edition.
Verlagsort:Boca Raton, FL
Verlag:CRC Press
Jahr:2024
Umfang:1 online resource (x, 206 pages)
Illustrationen:illustrations
Fussnoten:Includes bibliographical references and index. - Description based on online resource; title from digital title page (viewed on August 28, 2024)
ISBN:978-1-003-47446-3
 1-003-47446-2
 978-1-04-002659-5
 1-04-002659-1
 978-1-04-002661-8
 1-04-002661-3
Abstract:"The book aims to highlight the potential of Deep Learning (DL)-enabled methods in Intelligent Fault Diagnosis (IFD), along with their benefits and contributions. The authors first introduce basic applications of DL-enabled IFD, including auto-encoders, deep belief networks, and convolutional neural networks. Advanced topics of DL-enabled IFD are also explored, such as data augmentation, multi-sensor fusion, unsupervised deep transfer learning, neural architecture search, self-supervised learning, and reinforcement learning. Aiming to revolutionise the nature of IFD, the book contributes to improved efficiency, safety and reliability of mechanical systems in various industrial domains. The book will appeal to academic researchers, practitioners, and students in the fields of intelligent fault diagnosis, prognostics and health management, and deep learning"--
URL:Aggregator: https://learning.oreilly.com/library/view/-/9781040026618/?ar
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe
Sach-SW:Détection de défaut (Ingénierie) ; Informatique
 Apprentissage profond ; Applications industrielles
 COMPUTERS / Artificial Intelligence
 COMPUTERS / Neural Networks
K10plus-PPN:1910513059
 
 
Lokale URL UB: Zum Volltext
 
 Bibliothek der Medizinischen Fakultät Mannheim der Universität Heidelberg
 Klinikum MA Bestellen/Vormerken für Benutzer des Klinikums Mannheim
Eigene Kennung erforderlich
Bibliothek/Idn:UW / m4629561773
Lokale URL Inst.: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69279189   QR-Code
zum Seitenanfang