Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Titel:Future communication systems using artificial intelligence, internet of things and data science
Titelzusatz:for designers, artists, players, non-tech people and everybody else
Mitwirkende:Ullah, Inam [HerausgeberIn]   i
Verf.angabe:edited by Dr Inam Ullah, Dr Inam Ullah Khan, Dr Mariya Ouaissa, Dr Mariyam Ouaissa, Dr Salma EL Hajjami
Ausgabe:First edition.
Verlagsort:Boca Raton
Verlag:CRC Press
Jahr:2024
Umfang:1 online resource.
Fussnoten:Includes bibliographical references and index. - Online resource; title from PDF title page (Taylor & Francis, viewed May 3, 2024)
ISBN:978-1-032-64830-9
 1-032-64830-9
 978-1-04-003952-6
 1-04-003952-9
 978-1-04-003953-3
 1-04-003953-7
Abstract:"The goal of the Artificial Intelligence (AI), Internet of Things (IoT), and Data Science for future communications systems is to create a venue for industry and academics to collaborate on the development of network and system solutions based on data science, AI, and IoT. Recent breakthroughs in IoT, mobile and fixed communications, and computation have paved the way for a data-centric society of the future. New applications are increasingly reliant on machine-to-machine connections, resulting in unusual workloads and the need for more efficient and dependable infrastructures. Such a wide range of traffic workloads and applications will necessitate dynamic and highly adaptive network environments capable of self-optimization for the task at hand while ensuring high dependability and ultra-low latency. Networking devices, sensors, agents, meters, and smart vehicles/systems generate massive amounts of data, necessitating new levels of security, performance, and dependability. Such complications necessitate the development of new tools and approaches for providing successful services, management, and operation. Predictive network analytics will play a critical role in insight generation, process automation required for adapting and scaling to new demands, resolving issues before they impact operational performance (e.g., prevent network failures, anticipate capacity requirements), and overall network decision making. To increase user experience and service quality, data mining and analytic techniques for inferring quality of experience (QoE) signals are required. AI, IoT, machine learning, reinforcement learning, and network data analytics innovations open new possibilities in areas such as channel modeling and estimation, cognitive communications, interference alignment, mobility management, resource allocation, network control and management, network tomography, multi-agent systems, and network ultra-broadband deployment prioritization. These new analytic platforms will aid in the transformation of our networks and user experience. Future networks will enable unparalleled automation and optimization by intelligently gathering, analyzing, learning, and controlling huge volumes of information"--
URL:Aggregator: https://learning.oreilly.com/library/view/-/9781040039533/?ar
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe
Sach-SW:Internet des objets ; Prévision
 Intelligence artificielle ; Prévision
 Données volumineuses ; Aspect social
 COMPUTERS / Neural Networks
 COMPUTERS / Database Management / Data Mining
K10plus-PPN:1910515930
 
 
Lokale URL UB: Zum Volltext
 
 Bibliothek der Medizinischen Fakultät Mannheim der Universität Heidelberg
 Klinikum MA Bestellen/Vormerken für Benutzer des Klinikums Mannheim
Eigene Kennung erforderlich
Bibliothek/Idn:UW / m4629565086
Lokale URL Inst.: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69279224   QR-Code
zum Seitenanfang