Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Lange, Kenneth [VerfasserIn]   i
Titel:Applied probability
Verf.angabe:Kenneth Lange
Ausgabe:Third edition
Verlagsort:New York, NY
Verlag:Springer
Jahr:2024
Umfang:1 Online-Ressource (XVII, 602 Seiten)
Gesamttitel/Reihe:Springer texts in statistics
ISBN:978-1-0716-4172-9
Abstract:Applied Probability presents a unique blend of theory and applications, with special emphasis on mathematical modeling, computational techniques, and examples from the biological sciences. Chapter 1 reviews elementary probability and provides a brief survey of relevant results from measure theory. Chapter 2 is an extended essay on calculating expectations. Chapter 3 deals with probabilistic applications of convexity, inequalities, and optimization theory. Chapters 4 and 5 touch on combinatorics and combinatorial optimization. Chapters 6 through 11 present core material on stochastic processes. If supplemented with appropriate sections from Chapters 1 and 2, there is sufficient material for a traditional semester-long course in stochastic processes covering the basics of Poisson processes, Markov chains, branching processes, martingales, and diffusion processes. This third edition includes new topics and many worked exercises. The new chapter on entropy stresses Shannon entropy and its mathematical applications. New sections in existing chapters explain the Chinese restaurant problem, the infinite alleles model, saddlepoint approximations, and recurrence relations. The extensive list of new problems pursues topics such as random graph theory omitted in the previous editions. Computational probability receives even greater emphasis than earlier. Some of the solved problems are coding exercises, and Julia code is provided. Mathematical scientists from a variety of backgrounds will find Applied Probability appealing as a reference. This updated edition can serve as a textbook for graduate students in applied mathematics, biostatistics, computational biology, computer science, physics, and statistics. Readers should have a working knowledge of multivariate calculus, linear algebra, ordinary differential equations, and elementary probability theory.
DOI:doi:10.1007/978-1-0716-4172-9
URL:Resolving-System: https://doi.org/10.1007/978-1-0716-4172-9
 Cover: https://swbplus.bsz-bw.de/bsz1911777424cov.jpg
 DOI: https://doi.org/10.1007/978-1-0716-4172-9
Schlagwörter:(s)Statistik   i / (s)Wahrscheinlichkeitsrechnung   i / (s)Computermathematik   i
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe: Lange, Kenneth, 1946 - : Applied probability. - Third edition. - New York, NY : Springer, 2024. - xvii, 602 Seiten
Sach-SW:Statistique
 Probabilités
 Informatique
 Mathématiques
 statistics
 probability
K10plus-PPN:1911777424
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69282334   QR-Code
zum Seitenanfang