Navigation überspringen
Universitätsbibliothek Heidelberg
Status: bestellen
> Bestellen/Vormerken
Verfasst von:Smolyakov, Vadim [VerfasserIn]   i
Titel:Machine Learning Algorithms in Depth
Verf.angabe:Vadim Smolyakov
Verlagsort:Shelter Island
Verlag:Manning Publications
E-Jahr:2024
Jahr:[2024]
Umfang:xix, 305 Seiten
Illustrationen:Illustrationen
ISBN:978-1-63343-921-4
Abstract:Machine Learning Algorithms in Depth dives into the design and underlying principles of some of the most exciting machine learning (ML) algorithms in the world today. With a particular emphasis on probability-based algorithms, you will learn the fundamentals of Bayesian inference and deep learning
 Learn how machine learning algorithms work from the ground up so you can effectively troubleshoot your models and improve their performance. This book guides you from the core mathematical foundations of the most important ML algorithms to their Python implementations, with a particular focus on probability-based methods. Machine learning algorithms in depth dissects and explains dozens of algorithms across a variety of applications, including finance, computer vision, and NLP. Each algorithm is mathematically derived, followed by its hands-on Python implementation along with insightful code annotations and informative graphics. You'll especially appreciate author Vadim Smolyakov's clear interpretations of Bayesian algorithms for Monte Carlo and Markov models
URL:Cover: https://www.dietmardreier.de/annot/426F6F6B446174617C7C393738313633333433393231347C7C434F50.jpg?sq=1
Schlagwörter:(s)Maschinelles Lernen   i / (s)Algorithmus   i
Dokumenttyp:Lehrbuch
Sprache:eng
Sach-SW:Algorithmen und Datenstrukturen
 Algorithms & data structures
 COM094000
 COMPUTERS / Programming / Algorithms
 Machine learning
 Maschinelles Lernen
 Apprentissage automatique
 Algorithmes
 Processus de Markov
 Méthode de Monte-Carlo
 Théorie des automates
 algorithms
K10plus-PPN:1873096445
Exemplare:

SignaturQRStandortStatus
LN-U 10-20069QR-CodeZweigstelle Neuenheim / Lehrbuchsammlung3D-Planbestellbar
Mediennummer: 20225525

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69283752   QR-Code
zum Seitenanfang