Navigation überspringen
Universitätsbibliothek Heidelberg
Status: entliehen (gesamte Vormerkungen: 0)
> Bestellen/Vormerken
Signatur: LN-U 10-20072   QR-Code
Standort: Zweigstelle Neuenheim / Lehrbuchsammlung  3D-Plan
Exemplare: siehe unten
Verfasst von:Xiao, Zhiqing [VerfasserIn]   i
Titel:Reinforcement learning
Titelzusatz:theory and Python implementation
Verf.angabe:Zhiqing Xiao
Verlagsort:Beijing
 Singapore
Verlag:China Machine Press
 Springer
E-Jahr:2024
Jahr:[2024]
 [2024]
Umfang:xxii, 559 Seiten
Illustrationen:Illustrationen, Diagramme
ISBN:978-981-19-4932-6
Abstract:Reinforcement Learning: Theory and Python Implementation is a tutorial book on reinforcement learning, with explanations of both theory and applications. Starting from a uniform mathematical framework, this book derives the theory of modern reinforcement learning in a systematic way and introduces all mainstream reinforcement learning algorithms including both classical reinforcement learning algorithms such as eligibility trace and deep reinforcement learning algorithms such as PPO, SAC, and MuZero. Every chapter is accompanied by high-quality implementations based on the latest version of Python packages such as Gym, and the implementations of deep reinforcement learning algorithms are all with both TensorFlow 2 and PyTorch 1. All codes can be found on GitHub along with their results and are runnable on a conventional laptop with either Windows, macOS, or Linux. This book is intended for readers who want to learn reinforcement learning systematically and applyreinforcement learning to practical applications. It is also ideal to academical researchers who seek theoretical foundation or algorithm enhancement in their cutting-edge AI research
URL:Cover: https://www.dietmardreier.de/annot/564C42696D677C7C393738393831313934393332367C7C434F50.jpg?sq=32
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Online-Ausgabe: Xiao, Zhiqing: Reinforcement Learning. - 1st ed. 2024.. - Singapore : Springer Nature Singapore, 2024. - 1 Online-Ressource(XXII, 559 p. 61 illus., 60 illus. in color.)
Sach-SW:COMPUTERS / Artificial Intelligence
 MATHEMATICS / Probability & Statistics / General
 Machine learning
 Maschinelles Lernen
 Robotik
 TECHNOLOGY & ENGINEERING / Robotics
K10plus-PPN:1894677013
Exemplare:

SignaturQRStandortStatus
LN-U 10-20072QR-CodeZweigstelle Neuenheim / Lehrbuchsammlung3D-Planentliehen bis 15.07.2025 (gesamte Vormerkungen: 0)
Mediennummer: 20225528

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69283757   QR-Code
zum Seitenanfang