Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Mammen, Enno [VerfasserIn]  |
| Nielsen, Jens Perch [VerfasserIn]  |
| Scholz, Michael [VerfasserIn]  |
| Sperlich, Stefan [VerfasserIn]  |
Titel: | Conditional variance forecasts for long-term stock returns |
Verf.angabe: | Enno Mammen, Jens Perch Nielsen, Michael Scholz and Stefan Sperlich |
Jahr: | 2019 |
Umfang: | 22 S. |
Titel Quelle: | Enthalten in: Risks |
Ort Quelle: | Basel : MDPI, 2013 |
Jahr Quelle: | 2019 |
Band/Heft Quelle: | 7(2019), 4/113 vom: Dez., Seite 1-22 |
ISSN Quelle: | 2227-9091 |
Abstract: | In this paper, we apply machine learning to forecast the conditional variance of long-term stock returns measured in excess of different benchmarks, considering the short- and long-term interest rate, the earnings-by-price ratio, and the inflation rate. In particular, we apply in a two-step procedure a fully nonparametric local-linear smoother and choose the set of covariates as well as the smoothing parameters via cross-validation. We find that volatility forecastability is much less important at longer horizons regardless of the chosen model and that the homoscedastic historical average of the squared return prediction errors gives an adequate approximation of the unobserved realised conditional variance for both the one-year and five-year horizon. |
DOI: | doi:10.3390/risks7040113 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
kostenfrei: Resolving-System: https://doi.org/10.3390/risks7040113 |
| kostenfrei: Verlag: https://www.mdpi.com/2227-9091/7/4/113/pdf |
| kostenfrei: Resolving-System: http://hdl.handle.net/10419/257951 |
| Terms of use: https://creativecommons.org/licenses/by/4.0/ |
| DOI: https://doi.org/10.3390/risks7040113 |
| 10419/257951 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | autocorrelation |
| benchmark |
| cross-validation |
| long-term forecasts |
| overlapping returns |
| prediction |
| stock return volatility |
Form-SW: | Aufsatz in Zeitschrift |
K10plus-PPN: | 1684080657 |
Verknüpfungen: | → Zeitschrift |
Conditional variance forecasts for long-term stock returns / Mammen, Enno [VerfasserIn]; 2019 (Online-Ressource)
69283930