Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Walter, Alexandra [VerfasserIn]   i
 Hoegen-Saßmannshausen, Philipp [VerfasserIn]   i
 Stanic, Goran [VerfasserIn]   i
 Rodrigues, Joao Pedro [VerfasserIn]   i
 Adeberg, Sebastian [VerfasserIn]   i
 Jäkel, Oliver [VerfasserIn]   i
 Frank, Martin [VerfasserIn]   i
 Giske, Kristina [VerfasserIn]   i
Titel:Segmentation of 71 anatomical structures necessary for the evaluation of guideline-conforming clinical target volumes in head and neck cancers
Verf.angabe:Alexandra Walter, Philipp Hoegen-Saßmannshausen, Goran Stanic, Joao Pedro Rodrigues, Sebastian Adeberg, Oliver Jäkel, Martin Frank and Kristina Giske
E-Jahr:2024
Jahr:18 January 2024
Umfang:27 S.
Fussnoten:Gesehen am 18.12.2024
Titel Quelle:Enthalten in: Cancers
Ort Quelle:Basel : MDPI, 2009
Jahr Quelle:2024
Band/Heft Quelle:16(2024), 2, Artikel-ID 415, Seite 1-27
ISSN Quelle:2072-6694
Abstract:The delineation of the clinical target volumes (CTVs) for radiation therapy is time-consuming, requires intensive training and shows high inter-observer variability. Supervised deep-learning methods depend heavily on consistent training data; thus, State-of-the-Art research focuses on making CTV labels more homogeneous and strictly bounding them to current standards. International consensus expert guidelines standardize CTV delineation by conditioning the extension of the clinical target volume on the surrounding anatomical structures. Training strategies that directly follow the construction rules given in the expert guidelines or the possibility of quantifying the conformance of manually drawn contours to the guidelines are still missing. Seventy-one anatomical structures that are relevant to CTV delineation in head- and neck-cancer patients, according to the expert guidelines, were segmented on 104 computed tomography scans, to assess the possibility of automating their segmentation by State-of-the-Art deep learning methods. All 71 anatomical structures were subdivided into three subsets of non-overlapping structures, and a 3D nnU-Net model with five-fold cross-validation was trained for each subset, to automatically segment the structures on planning computed tomography scans. We report the DICE, Hausdorff distance and surface DICE for 71 + 5 anatomical structures, for most of which no previous segmentation accuracies have been reported. For those structures for which prediction values have been reported, our segmentation accuracy matched or exceeded the reported values. The predictions from our models were always better than those predicted by the TotalSegmentator. The sDICE with 2 mm margin was larger than 80% for almost all the structures. Individual structures with decreased segmentation accuracy are analyzed and discussed with respect to their impact on the CTV delineation following the expert guidelines. No deviation is expected to affect the rule-based automation of the CTV delineation.
DOI:doi:10.3390/cancers16020415
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.3390/cancers16020415
 kostenfrei: Volltext: https://www.mdpi.com/2072-6694/16/2/415
 DOI: https://doi.org/10.3390/cancers16020415
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:anatomical structures
 automatic segmentation
 clinical target volume delineation
 expert guidelines
 head and neck cancer
 lymph-node-level segmentation
 multi-label segmentation
K10plus-PPN:1912953250
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69285359   QR-Code
zum Seitenanfang