Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Titel:Social Network Analysis and Mining Applications in Healthcare and Anomaly Detection
Mitwirkende:Kaya, Mehmet [HerausgeberIn]   i
 Alhajj, Sleiman [HerausgeberIn]   i
 Sailunaz, Kashfia [HerausgeberIn]   i
 Day, Min-Yuh [HerausgeberIn]   i
Verf.angabe:edited by Mehmet Kaya, Sleiman Alhajj, Kashfia Sailunaz, Min-Yuh Day
Ausgabe:1st ed. 2024.
Verlagsort:Cham
 Cham
Verlag:Springer Nature Switzerland
 Imprint: Springer
E-Jahr:2024
Jahr:2024.
 2024.
Umfang:1 Online-Ressource(VI, 336 p. 131 illus., 121 illus. in color.)
Gesamttitel/Reihe:Lecture Notes in Social Networks
ISBN:978-3-031-75204-9
Abstract:Sensitivity to Noise in Features in Graph Neural Network Learning -- Interpretable Ensemble Model For Associative Classification -- Scalable Algorithms to Measure User Influence in Social Networks Detecting Comorbidity Using Machine Learning -- Detecting Comorbidity Using Machine Learning -- Evaluating the Effectiveness of Mitigative and Preventative Actions on Viral Spread In A Small Community Using An Agent-based Stochastic Simulation -- Evaluating the Effectiveness of Mitigative and Preventative Actions on Viral Spread In A Small Community Using An Agent-based Stochastic Simulation -- Predicting Donor Behavior using the Dynamics of Event Co-Attendance Networks Analyzing the impact of COVID-19 on Portuguese Social Media -- Analyzing the impact of COVID-19 on Portuguese Social Media -- SegSkin: An Effective Application for Skin Lesion Segmentation using Attention-Based VGG-UNet -- Segmentation and Classification of Dermoscopic Skin Images using U-Net and Handcrafted Features -- Global Prevalence Patterns of Anti-Asian Prejudice on Twitter During the COVID-19 Pandemic -- Enhancing fraud detection in SWIFT financial systems through Ontology-Based knowledge integration and Graph-Driven analysis -- A study of firm-switching of inventors in Big Tech using public patent data -- Measuring the Echo-chamber Phenomenon Through Exposure Bias.
 This book is an excellent source of knowledge for readers interested in the latest developments in social network analysis and mining, particularly with applications in healthcare and anomaly detection. It covers topics such as sensitivity to noise in features, enhancing fraud detection in financial systems, measuring the echo-chamber phenomenon, detecting comorbidity, and evaluating the effectiveness of mitigative and preventative actions on viral spread in small communities using agent-based stochastic simulations. Additionally, it discusses predicting behavior, measuring and identifying influence, analyzing the impact of COVID-19 on various social aspects, and using UNet for handling various skin conditions. This book helps readers develop their own perspectives on adapting social network concepts to various applications. It also demonstrates how to use various machine learning techniques for tackling challenges in social network analysis and mining.
DOI:doi:10.1007/978-3-031-75204-9
URL:Resolving-System: https://doi.org/10.1007/978-3-031-75204-9
 DOI: https://doi.org/10.1007/978-3-031-75204-9
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe
K10plus-PPN:1913281175
 
 
Lokale URL UB: Zum Volltext
 
 Bibliothek der Medizinischen Fakultät Mannheim der Universität Heidelberg
 Klinikum MA Bestellen/Vormerken für Benutzer des Klinikums Mannheim
Eigene Kennung erforderlich
Bibliothek/Idn:UW / m4639790708
Lokale URL Inst.: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69286478   QR-Code
zum Seitenanfang