Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag
Standort: ---
Exemplare: ---

+ Andere Auflagen/Ausgaben
heiBIB
 Online-Ressource
Verfasst von:Riezler, Stefan [VerfasserIn]   i
 Hagmann, Michael [VerfasserIn]   i
Titel:Validity, reliability, and significance
Titelzusatz:empirical methods for NLP and data science
Verf.angabe:by Stefan Riezler, Michael Hagmann
Ausgabe:2nd ed. 2024
Verlagsort:Cham
 Cham
Verlag:Springer Nature Switzerland
 Imprint: Springer
Jahr:2024
 2024
Umfang:1 Online-Ressource (XVII, 168 p. 70 illus., 61 illus. in color.)
Gesamttitel/Reihe:Synthesis Lectures on Human Language Technologies
ISBN:978-3-031-57065-0
Abstract:Preface -- Acknowledgments -- Introduction -- Validity -- Reliability -- Significance -- Worked-Through Example: Analyzing Inferential Reproducibility -- Bibliography.
 This book introduces empirical methods for machine learning with a special focus on applications in natural language processing (NLP) and data science. The authors present problems of validity, reliability, and significance and provide common solutions based on statistical methodology to solve them. The book focuses on model-based empirical methods where data annotations and model predictions are treated as training data for interpretable probabilistic models from the well-understood families of generalized additive models (GAMs) and linear mixed effects models (LMEMs). Based on the interpretable parameters of the trained GAMs or LMEMs, the book presents model-based statistical tests such as a validity test that allows for the detection of circular features that circumvent learning. Furthermore, the book discusses a reliability coefficient using variance decomposition based on random effect parameters of LMEMs. Lastly, a significance test based on the likelihood ratios of nested LMEMs trained on the performance scores of two machine learning models is shown to naturally allow the inclusion of variations in meta-parameter settings into hypothesis testing, and further facilitates a refined system comparison conditional on properties of input data. The book is self-contained with an appendix on the mathematical background of generalized additive models and linear mixed effects models as well as an accompanying webpage with the related R and Python code to replicate the presented experiments. The second edition also features a new hands-on chapter that illustrates how to use the included tools in practical applications.
DOI:doi:10.1007/978-3-031-57065-0
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Resolving-System: https://doi.org/10.1007/978-3-031-57065-0
 DOI: https://doi.org/10.1007/978-3-031-57065-0
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Online-Ausgabe: Riezler, Stefan: Validity, reliability, and significance. - Second edition. - Cham : Springer, 2024. - xvii, 168 Seiten
 Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe
Sach-SW:COM094000
 COMPUTERS / Database Management / General
 COMPUTERS / Natural Language Processing
 Databases
 Datenbanken
 MATHEMATICS / Discrete Mathematics
 MATHEMATICS / Probability & Statistics / General
 Machine learning
 Maschinelles Lernen
 Mathematik für Informatiker
 Maths for computer scientists
 Natural language & machine translation
 Natürliche Sprachen und maschinelle Übersetzung
 Probability & statistics
 Wahrscheinlichkeitsrechnung und Statistik
K10plus-PPN:1891055852

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69290169   QR-Code
zum Seitenanfang