Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Pakmor, Rüdiger [VerfasserIn]   i
 Seitenzahl, Ivo R. [VerfasserIn]   i
 Ruiter, Ashley J. [VerfasserIn]   i
 Sim, Stuart A. [VerfasserIn]   i
 Röpke, Friedrich [VerfasserIn]   i
 Taubenberger, Stefan [VerfasserIn]   i
 Bieri, Rebekka [VerfasserIn]   i
 Blondin, Stéphane [VerfasserIn]   i
Titel:Type Ia supernova explosion models are inherently multidimensional
Verf.angabe:Rüdiger Pakmor, Ivo R. Seitenzahl, Ashley J. Ruiter, Stuart A. Sim, Friedrich K. Röpke, Stefan Taubenberger, Rebekka Bieri, and Stéphane Blondin
E-Jahr:2024
Jahr:14 June 2024
Umfang:7 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 20.01.2025
Titel Quelle:Enthalten in: Astronomy and astrophysics
Ort Quelle:Les Ulis : EDP Sciences, 1969
Jahr Quelle:2024
Band/Heft Quelle:686(2024) vom: Juni, Artikel-ID A227, Seite 1-7
ISSN Quelle:1432-0746
Abstract:Theoretical and observational approaches to settling the important questions surrounding the progenitor systems and the explosion mechanism of normal Type Ia supernovae have thus far failed. With its unique capability to obtain continuous spectra through the near- and mid-infrared, JWST now offers completely new insights into Type Ia supernovae. In particular, observing them in the nebular phase allows us to directly see the central ejecta and thereby constrain the explosion mechanism. We aim to understand and quantify differences in the structure and composition of the central ejecta of various Type Ia supernova explosion models. We examined the currently most popular explosion scenarios using self-consistent multidimensional explosion simulations of delayed-detonation and pulsationally assisted, gravitationally confined delayed detonation Chandrasekhar-mass models and double-detonation sub-Chandrasekhar-mass and violent merger models. We find that the distribution of radioactive and stable nickel in the final ejecta, both observable in nebular spectra, are significantly different between different explosion scenarios. Therefore, comparing synthetic nebular spectra with JWST observations should allow us to distinguish between explosion models. We show that the explosion ejecta are inherently multidimensional for all models, and the Chandrasekhar-mass explosions simulated in spherical symmetry in particular lead to a fundamentally unphysical ejecta structure. Moreover, we show that radioactive and stable nickel cover a significant range of densities at a fixed velocity of the homologously expanding ejecta. Any radiation transfer postprocessing has to take these variations into account to obtain faithful synthetic observables; this will likely require multidimensional radiation transport simulations.
DOI:doi:10.1051/0004-6361/202449637
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1051/0004-6361/202449637
 kostenfrei: Volltext: https://www.aanda.org/articles/aa/abs/2024/06/aa49637-24/aa49637-24.html
 DOI: https://doi.org/10.1051/0004-6361/202449637
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1915136296
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69292488   QR-Code
zum Seitenanfang