Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Carabba, Nicoletta [VerfasserIn]   i
Titel:Quantum Speed Limits to Operator Growth
Verf.angabe:by Nicoletta Carabba
Ausgabe:1st ed. 2024.
Verlagsort:Cham
 Cham
Verlag:Springer Nature Switzerland
 Imprint: Springer
E-Jahr:2024
Jahr:2024.
 2024.
Umfang:1 Online-Ressource(XV, 137 p. 9 illus., 6 illus. in color.)
Gesamttitel/Reihe:Springer Theses, Recognizing Outstanding Ph.D. Research
ISBN:978-3-031-74179-1
Abstract:Chapter 1.Introduction -- Chapter 2.Operator growth in Krylov space -- Chapter 3.Dispersion bound on Krylov complexity -- Chapter 4.A brief history of quantum speed limits in isolated systems -- Chapter 5.QSLs on operator flows -- Chapter 6. QSLs on correlation functions -- Chapter 7.A geometric operator quantum speed limit -- Chapter 8.Conclusions.
 This book introduces universal bounds to quantum unitary dynamics, with applications ranging from condensed matter models to quantum metrology and computation. Motivated by the observation that the dynamics of many-body systems can be better unraveled in the Heisenberg picture, we focus on the unitary evolution of quantum observables, a process known as operator growth and quantified by the Krylov complexity. By means of a generalized uncertainty relation, we constrain the complexity growth through a universal speed limit named the dispersion bound, investigating also its relation with quantum chaos. Furthermore, the book extends the framework of quantum speed limits (QSLs) to operator flows, identifying new fundamental timescales of physical processes. Crucially, the dynamics of operator complexity attains the QSL whenever the dispersion bound is saturated. Our results provide computable constraints on the linear response of many-body systems out of equilibrium and the quantum Fisher information governing the precision of quantum measurements.
DOI:doi:10.1007/978-3-031-74179-1
URL:Resolving-System: https://doi.org/10.1007/978-3-031-74179-1
 DOI: https://doi.org/10.1007/978-3-031-74179-1
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe
K10plus-PPN:1916312454
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69300233   QR-Code
zum Seitenanfang