Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Jacquier, Antoine [VerfasserIn]   i
 Kondratyev, Oleksiy [VerfasserIn]   i
Titel:Quantum machine learning and optimisation in finance
Titelzusatz:drive financial innovation with quantum-powered algorithms and optimisation strategies
Verf.angabe:Antoine Jacquier, Oleksiy Kondratyev
Ausgabe:Second edition.
Verlagsort:Birmingham, UK
Verlag:Packt Publishing Ltd.
Jahr:2024
Umfang:1 online resource (494 pages)
Illustrationen:illustrations
Fussnoten:Includes bibliographical references and index
ISBN:978-1-83620-960-7
 1-83620-960-6
 978-1-83620-961-4
Abstract:As quantum machine learning (QML) continues to evolve, many professionals struggle to apply its powerful algorithms to real-world problems using noisy intermediate-scale quantum (NISQ) hardware. This book bridges that gap by focusing on hands-on QML applications tailored to NISQ systems, moving beyond the traditional textbook approaches that explore standard algorithms like Shor's and Grover's, which lie beyond current NISQ capabilities. You’ll get to grips with major QML algorithms that have been widely studied for their transformative potential in finance and learn hybrid quantum-classical computational protocols, the most effective way to leverage quantum and classical computing systems together. The authors, Antoine Jacquier, a distinguished researcher in quantum computing and stochastic analysis, and Oleksiy Kondratyev, a Quant of the Year awardee with over 20 years in quantitative finance, offer a hardware-agnostic perspective. They present a balanced view of both analog and digital quantum computers, delving into the fundamental characteristics of the algorithms while highlighting the practical limitations of today’s quantum hardware. By the end of this quantum book, you’ll have a deeper understanding of the significance of quantum computing in finance and the skills needed to apply QML to solve complex challenges, driving innovation in your work.
URL:Aggregator: https://learning.oreilly.com/library/view/-/9781836209614/?ar
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1916328997
 
 
Lokale URL UB: Zum Volltext
 
 Bibliothek der Medizinischen Fakultät Mannheim der Universität Heidelberg
 Klinikum MA Bestellen/Vormerken für Benutzer des Klinikums Mannheim
Eigene Kennung erforderlich
Bibliothek/Idn:UW / m4660773604
Lokale URL Inst.: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69300330   QR-Code
zum Seitenanfang