Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kulikov, Nikita [VerfasserIn]   i
 Derakhshandeh, Fatemeh [VerfasserIn]   i
 Mayer, Christoph [VerfasserIn]   i
Titel:Machine learning can be as good as maximum likelihood when reconstructing phylogenetic trees and determining the best evolutionary model on four taxon alignments
Verf.angabe:Nikita Kulikov, Fatemeh Derakhshandeh, Christoph Mayer
E-Jahr:2024
Jahr:November 2024
Umfang:12 S.
Illustrationen:Illustrationen
Fussnoten:Online verfügbar 30 August 2024, Version des Artikels 30 August 2024 ; Gesehen am 14.02.2025
Titel Quelle:Enthalten in: Molecular phylogenetics and evolution
Ort Quelle:Orlando, Fla. : Academic Press, 1992
Jahr Quelle:2024
Band/Heft Quelle:200(2024) vom: Nov., Artikel-ID 108181, Seite 1-12
ISSN Quelle:1095-9513
Abstract:Phylogenetic tree reconstruction with molecular data is important in many fields of life science research. The gold standard in this discipline is the phylogenetic tree reconstruction based on the Maximum Likelihood method. In this study, we present neural networks to predict the best model of sequence evolution and the correct topology for four sequence alignments of nucleotide or amino acid sequence data. We trained neural networks with different architectures using simulated alignments for a wide range of evolutionary models, model parameters and branch lengths. By comparing the accuracy of model and topology prediction of the trained neural networks with Maximum Likelihood and Neighbour Joining methods, we show that for quartet trees, the neural network classifier outperforms the Neighbour Joining method and is in most cases as good as the Maximum Likelihood method to infer the best model of sequence evolution and the best tree topology. These results are consistent for nucleotide and amino acid sequence data. We also show that our method is superior for model selection than previously published methods based on convolutionary networks. Furthermore, we found that neural network classifiers are much faster than the IQ-TREE implementation of the Maximum Likelihood method. Our results show that neural networks could become a true competitor for the Maximum Likelihood method in phylogenetic reconstructions.
DOI:doi:10.1016/j.ympev.2024.108181
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1016/j.ympev.2024.108181
 kostenfrei: Volltext: https://www.sciencedirect.com/science/article/pii/S1055790324001738
 DOI: https://doi.org/10.1016/j.ympev.2024.108181
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Machine learning
 Neural network
 Phylogenetic tree reconstruction
 Phylogeny
 Substitution model selection
K10plus-PPN:1917242034
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69304437   QR-Code
zum Seitenanfang