Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Winkler, Julia K. [VerfasserIn]   i
 Kommoss, Katharina [VerfasserIn]   i
 Vollmer, Anastasia S. [VerfasserIn]   i
 Blum, Andreas [VerfasserIn]   i
 Stolz, Wilhelm [VerfasserIn]   i
 Kränke, T. [VerfasserIn]   i
 Hofmann-Wellenhof, R. [VerfasserIn]   i
 Enk, Alexander [VerfasserIn]   i
 Toberer, Ferdinand [VerfasserIn]   i
 Hänßle, Holger [VerfasserIn]   i
Titel:Computerizing the first step of the two-step algorithm in dermoscopy
Titelzusatz:a convolutional neural network for differentiating melanocytic from non-melanocytic skin lesions
Verf.angabe:Julia K. Winkler, Katharina S. Kommoss, Anastasia S. Vollmer, Andreas Blum, Wilhelm Stolz, T. Kränke, R. Hofmann-Wellenhof, Alexander Enk, Ferdinand Toberer, Holger A. Haenssle
E-Jahr:2024
Jahr:October 2024
Umfang:6 S.
Illustrationen:Illustrationen
Fussnoten:Online verfügbar 25 August 2024, Version des Artikels 31 August 2024 ; Results of an international cross-sectional reader study including 96 dermatologist ; Gesehen am 17.02.2025
Titel Quelle:Enthalten in: European journal of cancer
Ort Quelle:Amsterdam [u.a.] : Elsevier, 1992
Jahr Quelle:2024
Band/Heft Quelle:210(2024) vom: Okt., Artikel-ID 114297, Seite 1-6
ISSN Quelle:1879-0852
Abstract:Importance - Convolutional neural networks (CNN) have shown performance equal to trained dermatologists in differentiating benign from malignant skin lesions. To improve clinicians’ management decisions, additional classifications into diagnostic categories might be helpful. - Methods - A convenience sample of 100 pigmented/non-pigmented skin lesions was used for a cross-sectional two-level reader study including 96 dermatologists (level I: dermoscopy only; level II: clinical close-up images, dermoscopy, and textual information). Dermoscopic images were classified by a binary CNN trained to differentiate melanocytic from non-melanocytic lesions (FotoFinder Systems, Bad Birnbach, Germany). Primary endpoint was the accuracy of the CNN’s classification in comparison with dermatologists reviewing level-II information. Secondary endpoints included dermatologists’ accuracies according to their level of experience and the CNN’s area under the curve (AUC) of receiver operating characteristics (ROC). - Results - The CNN revealed an accuracy and ROC AUC with corresponding 95 % confidence intervals (CI) of 91.0 % (83.8 % to 95.2 %) and 0.981 (0.962 to 1). In level I, dermatologists showed a mean accuracy of 83.7 % (82.5 % to 84.8 %). With level II information, the accuracy improved to 87.8 % (86.7 % to 88.9 %; p < 0.001). When comparing accuracies of CNN and dermatologists in level II, the CNN’s accuracy was higher (91.0 % versus 87.8 %, p < 0.001). For experts with level II information results were on par with the CNN (91.0 % versus 90.4 %, p = 0.368). - Conclusions - The tested CNN accurately differentiated melanocytic from non-melanocytic skin lesions and outperformed dermatologists. The CNN may support clinicians and could be used in an ensemble approach combined with other CNN models.
DOI:doi:10.1016/j.ejca.2024.114297
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.ejca.2024.114297
 Volltext: https://www.sciencedirect.com/science/article/pii/S0959804924009535
 DOI: https://doi.org/10.1016/j.ejca.2024.114297
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Convolutional neural network
 Ensemble approach
 Melanocytic
 Two-step dermoscopy algorithm
K10plus-PPN:1917334354
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69305008   QR-Code
zum Seitenanfang