Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Tran, Tuan-Anh [VerfasserIn]   i
 Sridhar, Sushmita [VerfasserIn]   i
 Reece, Stephen T. [VerfasserIn]   i
 Lunguya, Octavie [VerfasserIn]   i
 Jacobs, Jan [VerfasserIn]   i
 Van Puyvelde, Sandra [VerfasserIn]   i
 Marks, Florian [VerfasserIn]   i
 Dougan, Gordon [VerfasserIn]   i
 Thomson, Nicholas R. [VerfasserIn]   i
 Nguyen, Binh T. [VerfasserIn]   i
 Bao, Pham The [VerfasserIn]   i
 Baker, Stephen [VerfasserIn]   i
Titel:Combining machine learning with high-content imaging to infer ciprofloxacin susceptibility in isolates of Salmonella Typhimurium
Verf.angabe:Tuan-Anh Tran, Sushmita Sridhar, Stephen T. Reece, Octavie Lunguya, Jan Jacobs, Sandra Van Puyvelde, Florian Marks, Gordon Dougan, Nicholas R. Thomson, Binh T. Nguyen, Pham The Bao & Stephen Baker
E-Jahr:2024
Jahr:13 June 2024
Umfang:15 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 17.02.2025
Titel Quelle:Enthalten in: Nature Communications
Ort Quelle:[London] : Springer Nature, 2010
Jahr Quelle:2024
Band/Heft Quelle:15(2024), Artikel-ID 5074, Seite 1-15
ISSN Quelle:2041-1723
Abstract:Antimicrobial resistance (AMR) is a growing public health crisis that requires innovative solutions. Current susceptibility testing approaches limit our ability to rapidly distinguish between antimicrobial-susceptible and -resistant organisms. Salmonella Typhimurium (S. Typhimurium) is an enteric pathogen responsible for severe gastrointestinal illness and invasive disease. Despite widespread resistance, ciprofloxacin remains a common treatment for Salmonella infections, particularly in lower-resource settings, where the drug is given empirically. Here, we exploit high-content imaging to generate deep phenotyping of S. Typhimurium isolates longitudinally exposed to increasing concentrations of ciprofloxacin. We apply machine learning algorithms to the imaging data and demonstrate that individual isolates display distinct growth and morphological characteristics that cluster by time point and susceptibility to ciprofloxacin, which occur independently of ciprofloxacin exposure. Using a further set of S. Typhimurium clinical isolates, we find that machine learning classifiers can accurately predict ciprofloxacin susceptibility without exposure to it or any prior knowledge of resistance phenotype. These results demonstrate the principle of using high-content imaging with machine learning algorithms to predict drug susceptibility of clinical bacterial isolates. This technique may be an important tool in understanding the morphological impact of antimicrobials on the bacterial cell to identify drugs with new modes of action.
DOI:doi:10.1038/s41467-024-49433-4
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1038/s41467-024-49433-4
 kostenfrei: Volltext: https://www.nature.com/articles/s41467-024-49433-4
 DOI: https://doi.org/10.1038/s41467-024-49433-4
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Applied microbiology
 Cellular microbiology
K10plus-PPN:1917337256
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69305012   QR-Code
zum Seitenanfang