| Online-Ressource |
Verfasst von: | Chanda, Tirtha [VerfasserIn]  |
| Hauser, Katja [VerfasserIn]  |
| Hobelsberger, Sarah [VerfasserIn]  |
| Bucher, Tabea-Clara [VerfasserIn]  |
| Garcia, Carina Nogueira [VerfasserIn]  |
| Wies, Christoph [VerfasserIn]  |
| Kittler, Harald [VerfasserIn]  |
| Tschandl, Philipp [VerfasserIn]  |
| Navarrete-Dechent, Cristian [VerfasserIn]  |
| Podlipnik, Sebastian [VerfasserIn]  |
| Chousakos, Emmanouil [VerfasserIn]  |
| Crnaric, Iva [VerfasserIn]  |
| Majstorovic, Jovana [VerfasserIn]  |
| Alhajwan, Linda [VerfasserIn]  |
| Foreman, Tanya [VerfasserIn]  |
| Peternel, Sandra [VerfasserIn]  |
| Sarap, Sergei [VerfasserIn]  |
| Özdemir, İrem [VerfasserIn]  |
| Barnhill, Raymond L. [VerfasserIn]  |
| Llamas-Velasco, Mar [VerfasserIn]  |
| Poch, Gabriela [VerfasserIn]  |
| Korsing, Sören [VerfasserIn]  |
| Sondermann, Wiebke [VerfasserIn]  |
| Gellrich, Frank Friedrich [VerfasserIn]  |
| Heppt, Markus V. [VerfasserIn]  |
| Erdmann, Michael [VerfasserIn]  |
| Haferkamp, Sebastian [VerfasserIn]  |
| Drexler, Konstantin Maximilian [VerfasserIn]  |
| Goebeler, Matthias [VerfasserIn]  |
| Schilling, Bastian [VerfasserIn]  |
| Utikal, Jochen [VerfasserIn]  |
| Ghoreschi, Kamran [VerfasserIn]  |
| Fröhling, Stefan [VerfasserIn]  |
| Krieghoff-Henning, Eva [VerfasserIn]  |
| Brinker, Titus Josef [VerfasserIn]  |
Titel: | Dermatologist-like explainable AI enhances trust and confidence in diagnosing melanoma |
Verf.angabe: | Tirtha Chanda, Katja Hauser, Sarah Hobelsberger, Tabea-Clara Bucher, Carina Nogueira Garcia, Christoph Wies, Harald Kittler, Philipp Tschandl, Cristian Navarrete-Dechent, Sebastian Podlipnik, Emmanouil Chousakos, Iva Crnaric, Jovana Majstorovic, Linda Alhajwan, Tanya Foreman, Sandra Peternel, Sergei Sarap, İrem Özdemir, Raymond L. Barnhill, Mar Llamas-Velasco, Gabriela Poch, Sören Korsing, Wiebke Sondermann, Frank Friedrich Gellrich, Markus V. Heppt, Michael Erdmann, Sebastian Haferkamp, Konstantin Drexler, Matthias Goebeler, Bastian Schilling, Jochen S. Utikal, Kamran Ghoreschi, Stefan Fröhling, Eva Krieghoff-Henning, Titus J. Brinker |
E-Jahr: | 2024 |
Jahr: | 15 January 2024 |
Umfang: | 17 S. |
Fussnoten: | Gesehen am 18.02.2025 |
Titel Quelle: | Enthalten in: Nature Communications |
Ort Quelle: | [London] : Springer Nature, 2010 |
Jahr Quelle: | 2024 |
Band/Heft Quelle: | 15(2024), Artikel-ID 524, Seite 1-17 |
ISSN Quelle: | 2041-1723 |
Abstract: | Artificial intelligence (AI) systems have been shown to help dermatologists diagnose melanoma more accurately, however they lack transparency, hindering user acceptance. Explainable AI (XAI) methods can help to increase transparency, yet often lack precise, domain-specific explanations. Moreover, the impact of XAI methods on dermatologists’ decisions has not yet been evaluated. Building upon previous research, we introduce an XAI system that provides precise and domain-specific explanations alongside its differential diagnoses of melanomas and nevi. Through a three-phase study, we assess its impact on dermatologists’ diagnostic accuracy, diagnostic confidence, and trust in the XAI-support. Our results show strong alignment between XAI and dermatologist explanations. We also show that dermatologists’ confidence in their diagnoses, and their trust in the support system significantly increase with XAI compared to conventional AI. This study highlights dermatologists’ willingness to adopt such XAI systems, promoting future use in the clinic. |
DOI: | doi:10.1038/s41467-023-43095-4 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
Volltext: https://doi.org/10.1038/s41467-023-43095-4 |
| Volltext: https://www.nature.com/articles/s41467-023-43095-4 |
| DOI: https://doi.org/10.1038/s41467-023-43095-4 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Bibliogr. Hinweis: | Ergänzung: Rosenbacke, Rikard: False conflict and false confirmation errors are crucial components of AI accuracy in medical decision making, in: Nature Communications |
Sach-SW: | Diagnostic markers |
| Physical examination |
| Preventive medicine |
K10plus-PPN: | 1917496508 |
Verknüpfungen: | → Zeitschrift |
Dermatologist-like explainable AI enhances trust and confidence in diagnosing melanoma / Chanda, Tirtha [VerfasserIn]; 15 January 2024 (Online-Ressource)