Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Kang, Tae Yeob [VerfasserIn]   i
 Lee, Haebom [VerfasserIn]   i
 Suh, Sungho [VerfasserIn]   i
Titel:An empirical study on fault detection and root cause analysis of indium tin oxide electrodes by processing S-parameter patterns
Verf.angabe:Tae Yeob Kang, Haebom Lee, and Sungho Suh
E-Jahr:2024
Jahr:September 2024
Umfang:10 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 19.02.2025
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE transactions on device and materials reliability
Ort Quelle:New York, NY : IEEE, 2001
Jahr Quelle:2024
Band/Heft Quelle:24(2024), 3 vom: Sept., Seite 380-389
ISSN Quelle:1558-2574
Abstract:In the field of optoelectronics, indium tin oxide (ITO) electrodes play a crucial role in various applications, such as displays, sensors, and solar cells. Effective fault diagnosis and root cause analysis of the ITO electrodes are essential to ensure the performance and reliability of the devices. However, traditional visual inspection is challenging with transparent ITO electrodes, and existing fault diagnosis methods have limitations in determining the root causes of the defects, often requiring destructive evaluations and secondary material characterization techniques. In this study, a fault diagnosis method with root cause analysis is proposed using scattering parameter (S-parameter) patterns, offering early detection, high diagnostic accuracy, and noise robustness. A comprehensive S-parameter pattern database is obtained according to various defect states of the ITO electrodes. Deep learning (DL) approaches, including multilayer perceptron (MLP), convolutional neural network (CNN), and transformer, are then used to simultaneously analyze the cause and severity of defects. Notably, it is demonstrated that the diagnostic performance under additive noise levels can be significantly enhanced by combining different channels of the S-parameters as input to the learning algorithms, as confirmed through the t-distributed stochastic neighbor embedding (t-SNE) dimension reduction visualization of the S-parameter patterns.
DOI:doi:10.1109/TDMR.2024.3415049
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1109/TDMR.2024.3415049
 Volltext: https://ieeexplore.ieee.org/document/10559267
 DOI: https://doi.org/10.1109/TDMR.2024.3415049
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Deep learning
 Electrodes
 fault diagnosis
 Fault diagnosis
 Indium tin oxide
 ITO transparent electrodes
 Materials reliability
 Performance evaluation
 Probes
 root cause analysis
 S-parameter
 Scattering parameters
K10plus-PPN:1917626738
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69306219   QR-Code
zum Seitenanfang