Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Aminifar, Amin [VerfasserIn]   i
 Shokri, Matin [VerfasserIn]   i
 Aminifar, Amir [VerfasserIn]   i
Titel:Privacy-preserving edge federated learning for intelligent mobile-health systems
Verf.angabe:Amin Aminifar, Matin Shokri, Amir Aminifar
E-Jahr:2024
Jahr:December 2024
Umfang:13 S.
Illustrationen:Illustrationen
Fussnoten:Online verfügbar: 23. Juli 2024, Artikelversion: 7. August 2024 ; Gesehen am 24.02.2025
Titel Quelle:Enthalten in: Future generation computer systems
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1984
Jahr Quelle:2024
Band/Heft Quelle:161(2024) vom: Dez., Seite 625-637
ISSN Quelle:0167-739X
Abstract:Machine Learning (ML) algorithms are generally designed for scenarios in which all data is stored in one data center, where the training is performed. However, in many applications, e.g., in the healthcare domain, the training data is distributed among several entities, e.g., different hospitals or patients’ mobile devices/sensors. At the same time, transferring the data to a central location for learning is certainly not an option, due to privacy concerns and legal issues, and in certain cases, because of the communication and computation overheads. Federated Learning (FL) is the state-of-the-art collaborative ML approach for training an ML model across multiple parties holding local data samples, without sharing them. However, enabling learning from distributed data over such edge Internet of Things (IoT) systems (e.g., mobile-health and wearable technologies, involving sensitive personal/medical data) in a privacy-preserving fashion presents a major challenge mainly due to their stringent resource constraints, i.e., limited computing capacity, communication bandwidth, memory storage, and battery lifetime. In this paper, we propose a privacy-preserving edge FL framework for resource-constrained mobile-health and wearable technologies over the IoT infrastructure. We evaluate our proposed framework extensively and provide the implementation of our technique on Amazon’s AWS cloud platform based on the seizure detection application in epilepsy monitoring using wearable technologies.
DOI:doi:10.1016/j.future.2024.07.035
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1016/j.future.2024.07.035
 kostenfrei: Volltext: https://www.sciencedirect.com/science/article/pii/S0167739X24003972
 DOI: https://doi.org/10.1016/j.future.2024.07.035
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Edge federated learning
 Mobile-health technologies
 Privacy-preserving machine learning
K10plus-PPN:1917874979
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69307408   QR-Code
zum Seitenanfang