Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Eulig, Elias [VerfasserIn]   i
 Ommer, Björn [VerfasserIn]   i
 Kachelrieß, Marc [VerfasserIn]   i
Titel:Benchmarking deep learning-based low-dose CT image denoising algorithms
Verf.angabe:Elias Eulig, Björn Ommer, Marc Kachelrieß
E-Jahr:2024
Jahr:17 September 2024
Umfang:13 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 25.02.2025
Titel Quelle:Enthalten in: Medical physics
Ort Quelle:Hoboken, NJ : Wiley, 1974
Jahr Quelle:2024
Band/Heft Quelle:51(2024), 12, Seite 8776-8788
ISSN Quelle:2473-4209
 1522-8541
Abstract:Background Long-lasting efforts have been made to reduce radiation dose and thus the potential radiation risk to the patient for computed tomography (CT) acquisitions without severe deterioration of image quality. To this end, various techniques have been employed over the years including iterative reconstruction methods and noise reduction algorithms. Purpose Recently, deep learning-based methods for noise reduction became increasingly popular and a multitude of papers claim ever improving performance both quantitatively and qualitatively. However, the lack of a standardized benchmark setup and inconsistencies in experimental design across studies hinder the verifiability and reproducibility of reported results. Methods In this study, we propose a benchmark setup to overcome those flaws and improve reproducibility and verifiability of experimental results in the field. We perform a comprehensive and fair evaluation of several state-of-the-art methods using this standardized setup. Results Our evaluation reveals that most deep learning-based methods show statistically similar performance, and improvements over the past years have been marginal at best. Conclusions This study highlights the need for a more rigorous and fair evaluation of novel deep learning-based methods for low-dose CT image denoising. Our benchmark setup is a first and important step towards this direction and can be used by future researchers to evaluate their algorithms.
DOI:doi:10.1002/mp.17379
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1002/mp.17379
 kostenfrei: Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/mp.17379
 DOI: https://doi.org/10.1002/mp.17379
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:benchmarking
 computed tomography
 deep learning
 denoising
 low-dose
K10plus-PPN:1918488738
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69308376   QR-Code
zum Seitenanfang