| Online-Ressource |
Verfasst von: | Nölke, Jan-Hinrich [VerfasserIn]  |
| Adler, Tim J. [VerfasserIn]  |
| Schellenberg, Melanie [VerfasserIn]  |
| Dreher, Kris K. [VerfasserIn]  |
| Holzwarth, Niklas [VerfasserIn]  |
| Bender, Christoph J. [VerfasserIn]  |
| Tizabi, Minu D. [VerfasserIn]  |
| Seitel, Alexander [VerfasserIn]  |
| Maier-Hein, Lena [VerfasserIn]  |
Titel: | Photoacoustic quantification of tissue oxygenation using conditional invertible neural networks |
Verf.angabe: | Jan-Hinrich Nölke, Tim J. Adler, Melanie Schellenberg, Kris K. Dreher, Niklas Holzwarth, Christoph J. Bender, Minu D. Tizabi, Alexander Seitel, and Lena Maier-Hein |
E-Jahr: | 2024 |
Jahr: | 24 May 2024 |
Umfang: | 11 S. |
Illustrationen: | Illustrationen |
Fussnoten: | Gesehen am 24.02.2025 |
Titel Quelle: | Enthalten in: Institute of Electrical and Electronics EngineersIEEE transactions on medical imaging |
Ort Quelle: | New York, NY : Institute of Electrical and Electronics Engineers,, 1982 |
Jahr Quelle: | 2024 |
Band/Heft Quelle: | 43(2024), 9, Seite 3366-3376 |
ISSN Quelle: | 1558-254X |
Abstract: | Intelligent systems in interventional healthcare depend on the reliable perception of the environment. In this context, photoacoustic tomography (PAT) has emerged as a non-invasive, functional imaging modality with great clinical potential. Current research focuses on converting the high-dimensional, not human-interpretable spectral data into the underlying functional information, specifically the blood oxygenation. One of the largely unexplored issues stalling clinical advances is the fact that the quantification problem is ambiguous, i.e. that radically different tissue parameter configurations could lead to almost identical photoacoustic spectra. In the present work, we tackle this problem with conditional Invertible Neural Networks (cINNs). Going beyond traditional point estimates, our network is used to compute an approximation of the conditional posterior density of tissue parameters given the photoacoustic spectrum. To this end, an automatic mode detection algorithm extracts the plausible solution from the sample-based posterior. According to a comprehensive validation study based on both synthetic and real images, our approach is well-suited for exploring ambiguity in quantitative PAT. |
DOI: | doi:10.1109/TMI.2024.3403417 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
kostenfrei: Volltext: https://doi.org/10.1109/TMI.2024.3403417 |
| kostenfrei: Volltext: https://ieeexplore.ieee.org/document/10538320 |
| DOI: https://doi.org/10.1109/TMI.2024.3403417 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Biomedical optical imaging |
| Couplings |
| Deep learning |
| inverse problems |
| invertible networks |
| Optical imaging |
| Optical variables measurement |
| photoacoustic imaging |
| Standards |
| synthetic data |
| tissue oxygenation |
| Training |
| Vectors |
K10plus-PPN: | 1918607311 |
Verknüpfungen: | → Zeitschrift |
Photoacoustic quantification of tissue oxygenation using conditional invertible neural networks / Nölke, Jan-Hinrich [VerfasserIn]; 24 May 2024 (Online-Ressource)