Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Titel:Computer-Aided and Machine Learning-Driven Drug Design
Titelzusatz:From Theory to Applications
Mitwirkende:Maltarollo, Vinícius Gonçalves [HerausgeberIn]   i
Verf.angabe:edited by Vinícius Gonçalves Maltarollo
Ausgabe:1st ed. 2025.
Verlagsort:Cham
 Cham
Verlag:Springer Nature Switzerland
 Imprint: Springer
E-Jahr:2025
Jahr:2025.
 2025.
Umfang:1 Online-Ressource(XIII, 559 p. 114 illus., 87 illus. in color.)
Gesamttitel/Reihe:Computer-Aided Drug Discovery and Design ; 3
ISBN:978-3-031-76718-0
Abstract:Echoes from the past, visions from the future: a journey into the Medicinal Chemistry and the Computational Drug Discovery -- Molecular Databases -- A Brief Introduction to Pharmacogenomics and Personalized Medicine in the Drug Design Context -- Machine Learning and Neural Networks Methods Applied to Drug Discovery -- Clustering of Small Molecules -- QSAR and Machine learning predictors -- Molecular docking: state-of-art scoring functions and search algorithms -- Drug Design in Motion: concepts and applications of classical Molecular Dynamics simulations -- Conformational sampling of proteins: methods for simulate protein plasticity and ensemble docking -- Free energy perturbation and free energy calculations ap-plied to drug design -- Ultra-large-scale Virtual Screening -- Experimental assays: chemical properties, biochemical and cellular assays, and in vivo evaluations -- Challenges faced in the development of computational methods for predicting pharmacokinetics behavior -- Exploring the Significance of Experimental and Computational Methods in Protein Structure Determination -- Molecular modeling strategies in drug design, development, and discovery targeting proteases -- Computational study of conformational changes in nuclear receptors upon ligand binding -- An Overview on Computational Methods Targeting the Endocannabinoid System -- Kinase Inhibitors and Computer-aided Drug Design Methods -- Prediction of Drug Metabolism with In Silico Models: A Case Study of Doping Detection.
 The computer-aided drug design research field comprises several different knowledge areas, and often, researchers are only familiar or experienced with a small fraction of them. Indeed, pharmaceutical industries and large academic groups rely on a broad range of professionals, including chemists, biologists, pharmacists, and computer scientists. In this sense, it is difficult to be an expert in every single CADD approach. Furthermore, there are well-established methods that are constantly revisited, and novel approaches are introduced, such as machine-learning based scoring functions for molecular docking. This book provides an organized update of the most commonly employed CADD techniques, as well as successful examples of actual applications to develop bioactive compounds/drug candidates. Also includes is a section of case studies that cover certain pharmacological/target classes, focusing on the applications of the previously described methods. This part will especially appeal to professionals who are not as interested in the theoretical aspects of CADD. This is an ideal book for students, researchers, and industry professionals in the fields of pharmacy, chemistry, biology, bioinformatics, computer sciences, and medicine who are seeking a go-to reference on drug design and medicinal chemistry.
DOI:doi:10.1007/978-3-031-76718-0
URL:Resolving-System: https://doi.org/10.1007/978-3-031-76718-0
 DOI: https://doi.org/10.1007/978-3-031-76718-0
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe
K10plus-PPN:191898574X
 
 
Lokale URL UB: Zum Volltext
 
 Bibliothek der Medizinischen Fakultät Mannheim der Universität Heidelberg
 Klinikum MA Bestellen/Vormerken für Benutzer des Klinikums Mannheim
Eigene Kennung erforderlich
Bibliothek/Idn:UW / m4682037730
Lokale URL Inst.: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69314415   QR-Code
zum Seitenanfang