Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Höfler, Mathias [VerfasserIn]   i
 Liu, Xiaomin [VerfasserIn]   i
 Greb, Thomas [VerfasserIn]   i
 Alim, Karen [VerfasserIn]   i
Titel:Mechanical forces instruct division plane orientation of cambium stem cells during radial growth in Arabidopsis thaliana
Verf.angabe:Mathias Höfler, Xiaomin Liu, Thomas Greb, and Karen Alim
E-Jahr:2024
Jahr:2 December 2024
Umfang:19 S.
Illustrationen:Illustrationen
Fussnoten:Online verfügbar: 20. November 2024, Artikelversion: 2. Dezember 2024 ; Gesehen am 05.03.2025
Titel Quelle:Enthalten in: Current biology
Ort Quelle:Cambridge, MA : Cell Press, 1991
Jahr Quelle:2024
Band/Heft Quelle:34(2024), 23 vom: Dez., Seite 5518-5531.e4
ISSN Quelle:1879-0445
Abstract:Robust regulation of cell division is central to the formation of complex multi-cellular organisms and is a hallmark of stem cell activity. In plants, due to the absence of cell migration, the correct placement of newly produced cell walls during cell division is of eminent importance for generating functional tissues and organs. In particular, during the radial growth of plant shoots and roots, precise regulation and organization of cell divisions in the cambium are essential to produce adjacent xylem and phloem tissues in a strictly bidirectional manner. Although several intercellular signaling cascades have been identified to instruct tissue organization during radial growth, the role of mechanical forces in guiding cambium stem cell activity has been frequently proposed but, so far, not been functionally investigated on the cellular level. Here, we coupled anatomical analyses with a cell-based vertex model to analyze the role of mechanical stress in radial plant growth at the cell and tissue scale. Simulations based on segmented cellular outlines of radially growing Arabidopsis hypocotyls revealed a distinct stress pattern with circumferential stresses in cambium stem cells, which coincided with the orientation of cortical microtubules. Integrating stress patterns as a cue instructing cell division orientation was sufficient for the emergence of typical cambium-derived cell files and agreed with experimental results for stress-related tissue organization in confining mechanical environments. Our work thus underlines the significance of mechanical forces in tissue organization through self-emerging stress patterns during the growth of plant organs.
DOI:doi:10.1016/j.cub.2024.10.046
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1016/j.cub.2024.10.046
 kostenfrei: Volltext: https://www.sciencedirect.com/science/article/pii/S0960982224014416
 DOI: https://doi.org/10.1016/j.cub.2024.10.046
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:cambium
 cell division
 hypocotyl
 mechanical stress
 tissue growth
 tissue organization
 vertex model
K10plus-PPN:1919152202
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69314988   QR-Code
zum Seitenanfang