Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Pik, Jiri [VerfasserIn]   i
 Chan, Ernest P. [VerfasserIn]   i
 Broad, Jared [VerfasserIn]   i
 Sun, Philip [VerfasserIn]   i
 Vivek Singh [VerfasserIn]   i
Titel:Hands-on AI trading with Python, Quantconnect and AWS
Verf.angabe:Jiri Pik, Ernest P. Chan, Jared Broad, Philip Sun, Vivek Singh
Verlagsort:Hoboken, New Jersey
Verlag:John Wiley & Sons Inc.
E-Jahr:2025
Jahr:[2025]
Umfang:1 online resource (xxvi, 381 pages)
Illustrationen:color illustrations
Fussnoten:Includes bibliographical references and indexes. - Description based on online resource; title from digital title page (viewed on February 13, 2025)
ISBN:978-1-394-26766-8
 1-394-26766-5
 978-1-394-26767-5
 1-394-26767-3
 978-1-394-26843-6
Abstract:"Book Summary: This book is tailored for students, traders, and quants in finance who want to understand modern trading strategies and enhance them with artificial intelligence. It assumes basic knowledge of Python 3.x and familiarity with finance and trading concepts. Goals: AI Overview: Introduces key AI algorithms and best practices in financial trading. Intuitive Learning: Uses real-world examples to explain how algorithms work. Easy Experimentation: Provides a straightforward setup using QuantConnect.com for testing algorithms without complex infrastructure. The book avoids detailed infrastructure setup and large model training, instead using pre-trained models from AWS Bedrock, MLFinLab, or PredictNow.ai, making it accessible for readers to apply AI in trading strategies effectively"--
URL:Aggregator: https://learning.oreilly.com/library/view/-/9781394268436/?ar
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe
Sach-SW:Valeurs mobilières ; Commerce électronique
 Intelligence artificielle ; Applications financières
K10plus-PPN:1919256350
 
 
Lokale URL UB: Zum Volltext
 
 Bibliothek der Medizinischen Fakultät Mannheim der Universität Heidelberg
 Klinikum MA Bestellen/Vormerken für Benutzer des Klinikums Mannheim
Eigene Kennung erforderlich
Bibliothek/Idn:UW / m4683419831
Lokale URL Inst.: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69315682   QR-Code
zum Seitenanfang