Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Zheng, Yifeng [VerfasserIn]   i
 Nützl, Maximilian [VerfasserIn]   i
 Schackel, Thomas [VerfasserIn]   i
 Chen, Jing [VerfasserIn]   i
 Weidner, Norbert [VerfasserIn]   i
 Müller, Rainer [VerfasserIn]   i
 Puttagunta, Radhika [VerfasserIn]   i
Titel:Biomaterial scaffold stiffness influences the foreign body reaction, tissue stiffness, angiogenesis and neuroregeneration in spinal cord injury
Verf.angabe:Yifeng Zheng, Maximilian Nützl, Thomas Schackel, Jing Chen, Norbert Weidner, Rainer Müller, Radhika Puttagunta
E-Jahr:2025
Jahr:April 2025
Umfang:16 S.
Illustrationen:Illustrationen
Fussnoten:Online verfügbar: 12. Dezember 2024 ; Gesehen am 13.03.2025
Titel Quelle:Enthalten in: Bioactive materials
Ort Quelle:[Bejing] : KeAi Publishing, 2016
Jahr Quelle:2025
Band/Heft Quelle:46(2025) vom: Apr., Seite 134-149
ISSN Quelle:2452-199X
Abstract:Biomaterial scaffold engineering presents great potential in promoting axonal regrowth after spinal cord injury (SCI), yet persistent challenges remain, including the surrounding host foreign body reaction and improper host-implant integration. Recent advances in mechanobiology spark interest in optimizing the mechanical properties of biomaterial scaffolds to alleviate the foreign body reaction and facilitate seamless integration. The impact of scaffold stiffness on injured spinal cords has not been thoroughly investigated. Herein, we introduce stiffness-varied alginate anisotropic capillary hydrogel scaffolds implanted into adult rat C5 spinal cords post-lateral hemisection. Four weeks post-implantation, scaffolds with a stiffness approaching that of the spinal cord effectively minimize the host foreign body reaction via yes-associated protein (YAP) nuclear translocation. Concurrently, the softest scaffolds maximize cell infiltration and angiogenesis, fostering significant axonal regrowth but limiting the rostral-caudal linear growth. Furthermore, as measured by atomic force microscopy (AFM), the surrounding spinal cord softens when in contact with the stiffest scaffold while maintaining a physiological level in contact with the softest one. In conclusion, our findings underscore the pivotal role of stiffness in scaffold engineering for SCI in vivo, paving the way for the optimal development of efficacious biomaterial scaffolds for tissue engineering in the central nervous system.
DOI:doi:10.1016/j.bioactmat.2024.12.006
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1016/j.bioactmat.2024.12.006
 kostenfrei: Volltext: https://www.sciencedirect.com/science/article/pii/S2452199X24005358
 DOI: https://doi.org/10.1016/j.bioactmat.2024.12.006
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Alginate anisotropic capillary hydrogel
 Angiogenesis
 Atomic force microscopy
 Axonal regrowth
 Foreign body reaction
 Spinal cord injury
 Stiffness
K10plus-PPN:1919701982
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69318074   QR-Code
zum Seitenanfang