Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Eulig, Elias [VerfasserIn]   i
 Jäger, Fabian [VerfasserIn]   i
 Maier, Joscha [VerfasserIn]   i
 Ommer, Björn [VerfasserIn]   i
 Kachelrieß, Marc [VerfasserIn]   i
Titel:Reconstructing and analyzing the invariances of low-dose CT image denoising networks
Verf.angabe:Elias Eulig, Fabian Jäger, Joscha Maier, Björn Ommer, Marc Kachelrieß
E-Jahr:2025
Jahr:January 2025
Umfang:13 S.
Fussnoten:Gesehen am 14.03.2025
Titel Quelle:Enthalten in: Medical physics
Ort Quelle:Hoboken, NJ : Wiley, 1974
Jahr Quelle:2025
Band/Heft Quelle:52(2025), 1 vom: Jan., Seite 188-200
ISSN Quelle:2473-4209
 1522-8541
Abstract:Background Deep learning-based methods led to significant advancements in many areas of medical imaging, most of which are concerned with the reduction of artifacts caused by motion, scatter, or noise. However, with most neural networks being black boxes, they remain notoriously difficult to interpret, hindering their clinical implementation. In particular, it has been shown that networks exhibit invariances w.r.t. input features, that is, they learn to ignore certain information in the input data. Purpose To improve the interpretability of deep learning-based low-dose CT image denoising networks. Methods We learn a complete data representation of low-dose input images using a conditional variational autoencoder (cVAE). In this representation, invariances of any given denoising network are then disentangled from the information it is not invariant to using a conditional invertible neural network (cINN). At test time, image-space invariances are generated by applying the inverse of the cINN and subsequent decoding using the cVAE. We propose two methods to analyze sampled invariances and to find those that correspond to alterations of anatomical structures. Results The proposed method is applied to four popular deep learning-based low-dose CT image denoising networks. We find that the networks are not only invariant to noise amplitude and realizations, but also to anatomical structures. Conclusions The proposed method is capable of reconstructing and analyzing invariances of deep learning-based low-dose CT image denoising networks. This is an important step toward interpreting deep learning-based methods for medical imaging, which is essential for their clinical implementation.
DOI:doi:10.1002/mp.17413
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1002/mp.17413
 kostenfrei: Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/mp.17413
 DOI: https://doi.org/10.1002/mp.17413
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:computed tomography
 deep learning
 explainability
 invariances
 low-dose
 robustness
K10plus-PPN:1919847294
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69318710   QR-Code
zum Seitenanfang