Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Goswami, Alok [VerfasserIn]   i
 Rao, Bhamidi V. [VerfasserIn]   i
Titel:Measure Theory for Analysis and Probability
Verf.angabe:by Alok Goswami, B.V. Rao
Ausgabe:1st ed. 2025.
Verlagsort:Singapore
Verlag:Springer Nature Singapore$
Jahr:2025
Umfang:1 Online-Ressource(X, 377 p. 1 illus.)
Gesamttitel/Reihe:Indian Statistical Institute Series
ISBN:978-981-9779-29-1
Abstract:1. Measure Theory: Why and What -- 2. Measures: Construction and Properties -- 3. Measurable Functions and Integration -- 4. Random Variables and Random Vectors -- 5. Product Spaces -- 6. Radon-Nikodym Theorem and Lp Spaces -- 7. Convergence and Laws of Large Numbers -- 8. Weak convergence and Central Limit Theorem -- 9. Conditioning: The Right Approach -- 10. Infinite Products -- 11. Brownian Motion: A Brief Journey.
 This book covers major measure theory topics with a fairly extensive study of their applications to probability and analysis. It begins by demonstrating the essential nature of measure theory before delving into the construction of measures and the development of integration theory. Special attention is given to probability spaces and random variables/vectors. The text then explores product spaces, Radon–Nikodym and Jordan–Hahn theorems, providing a detailed account of Lp spaces and their duals. After revisiting probability theory, it discusses standard limit theorems such as the laws of large numbers and the central limit theorem, with detailed treatment of weak convergence and the role of characteristic functions. The book further explores conditional probabilities and expectations, preceded by motivating discussions. It discusses the construction of probability measures on infinite product spaces, presenting Tulcea’s theorem and Kolmogorov’s consistency theorem. The text concludes with the construction of Brownian motion, examining its path properties and the significant strong Markov property. This comprehensive guide is invaluable not only for those pursuing probability theory seriously but also for those seeking a robust foundation in measure theory to advance in modern analysis. By effectively motivating readers, it underscores the critical role of measure theory in grasping fundamental probability concepts.
DOI:doi:10.1007/978-981-97-7929-1
URL:Resolving-System: https://doi.org/10.1007/978-981-97-7929-1
 DOI: https://doi.org/10.1007/978-981-97-7929-1
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe: Goswami, Alok, 1954 - : Measure theory for analysis and probability. - Singapore : Springer Nature Singapore, 2025. - 383 Seiten
K10plus-PPN:1920028668
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69319761   QR-Code
zum Seitenanfang