| Online-Ressource |
Verfasst von: | Neumann, Jan-Oliver [VerfasserIn]  |
| Schmidt, Stephanie [VerfasserIn]  |
| Nohman, Amin [VerfasserIn]  |
| Naser, Paul [VerfasserIn]  |
| Jakobs, Martin [VerfasserIn]  |
| Unterberg, Andreas [VerfasserIn]  |
Titel: | Routine ICU surveillance after brain tumor surgery |
Titelzusatz: | patient selection using machine learning |
Verf.angabe: | Jan-Oliver Neumann, Stephanie Schmidt, Amin Nohman, Paul Naser, Martin Jakobs and Andreas Unterberg |
E-Jahr: | 2024 |
Jahr: | 26 September 2024 |
Umfang: | 12 S. |
Illustrationen: | Diagramme |
Fussnoten: | Gesehen am 26.03.2025 |
Weitere Titel: | Titel des special issue: Neurocritical Care: New Insights and Challenges |
Titel Quelle: | Enthalten in: Journal of Clinical Medicine |
Ort Quelle: | Basel : MDPI, 2012 |
Jahr Quelle: | 2024 |
Band/Heft Quelle: | 13(2024), 19, special issue, Artikel-ID 5747, Seite 1-12 |
ISSN Quelle: | 2077-0383 |
Abstract: | Background/Objectives: Routine postoperative ICU admission following brain tumor surgery may not benefit selected patients. The objective of this study was to develop a risk prediction instrument for early (within 24 h) postoperative adverse events using machine learning techniques. Methods: Retrospective cohort of 1000 consecutive adult patients undergoing elective brain tumor resection. Nine events/interventions (CPR, reintubation, return to OR, mechanical ventilation, vasopressors, impaired consciousness, intracranial hypertension, swallowing disorders, and death) were chosen as target variables. Potential prognostic features (n = 27) from five categories were chosen and a gradient boosting algorithm (XGBoost) was trained and cross-validated in a 5 × 5 fashion. Prognostic performance, potential clinical impact, and relative feature importance were analyzed. Results: Adverse events requiring ICU intervention occurred in 9.2% of cases. Other events not requiring ICU treatment were more frequent (35% of cases). The boosted decision trees yielded a cross-validated ROC-AUC of 0.81 ± 0.02 (mean ± CI95) when using pre- and post-op data. Using only pre-op data (scheduling decisions), ROC-AUC was 0.76 ± 0.02. PR-AUC was 0.38 ± 0.04 and 0.27 ± 0.03 for pre- and post-op data, respectively, compared to a baseline value (random classifier) of 0.092. Targeting a NPV of at least 95% would require ICU admission in just 15% (pre- and post-op data) or 30% (only pre-op data) of cases when using the prediction algorithm. Conclusions: Adoption of a risk prediction instrument based on boosted trees can support decision-makers to optimize ICU resource utilization while maintaining adequate patient safety. This may lead to a relevant reduction in ICU admissions for surveillance purposes. |
DOI: | doi:10.3390/jcm13195747 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
kostenfrei: Volltext: https://doi.org/10.3390/jcm13195747 |
| kostenfrei: Volltext: https://www.mdpi.com/2077-0383/13/19/5747 |
| DOI: https://doi.org/10.3390/jcm13195747 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | complications |
| craniotomy |
| ICU |
| machine learning |
| postoperative surveillance |
K10plus-PPN: | 1920611207 |
Verknüpfungen: | → Zeitschrift |
Routine ICU surveillance after brain tumor surgery / Neumann, Jan-Oliver [VerfasserIn]; 26 September 2024 (Online-Ressource)