Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Haghi, Mostafa [VerfasserIn]   i
 Martínez Madrid, Natividad [VerfasserIn]   i
 Seepold, Ralf E. D. [VerfasserIn]   i
Titel:In-home, smart sleep monitoring system for cardiorespiratory estimation and sleep apnea detection
Titelzusatz:proof of concept
Verf.angabe:Mostafa Haghi, Natividad Martínez Madrid, Ralf Seepold
E-Jahr:2024
Jahr:15 April 2024
Umfang:14 S.
Illustrationen:Illustrationen
Fussnoten:Veröffentlicht: 4. März 2024 ; Gesehen am 31.03.2025
Titel Quelle:Enthalten in: Institute of Electrical and Electronics EngineersIEEE sensors journal
Ort Quelle:New York, NY : IEEE, 2001
Jahr Quelle:2024
Band/Heft Quelle:24(2024), 8 vom: Apr., Seite 13364-13377
ISSN Quelle:1558-1748
Abstract:Apnea is a sleep disorder characterized by breathing interruptions during sleep, impacting cardiorespiratory function and overall health. Traditional diagnostic methods, like polysomnography (PSG), are unobtrusive, leading to noninvasive monitoring. This study aims to develop and validate a novel sleep monitoring system using noninvasive sensor technology to estimate cardiorespiratory parameters and detect sleep apnea. We designed a seamless monitoring system integrating noncontact force-sensitive resistor sensors to collect ballistocardiogram signals associated with cardiorespiratory activity. We enhanced the sensor’s sensitivity and reduced the noise by designing a new concept of edge-measuring sensor using a hemisphere dome and mechanical hanger to distribute the force and mechanically amplify the micromovement caused by cardiac and respiration activities. In total, we deployed three edge-measuring sensors, two deployed under the thoracic and one under the abdominal regions. The system is supported with onboard signal preprocessing in multiple physical layers deployed under the mattress. We collected the data in four sleeping positions from 16 subjects and analyzed them using ensemble empirical mode decomposition (EMD) to avoid frequency mixing. We also developed an adaptive thresholding method to identify sleep apnea. The error was reduced to 3.98 and 1.43 beats/min (BPM) in heart rate (HR) and respiration estimation, respectively. The apnea was detected with an accuracy of 87%. We optimized the system such that only one edge-measuring sensor can measure the cardiorespiratory parameters. Such a reduction in the complexity and simplification of the instruction of use shows excellent potential for in-home and continuous monitoring.
DOI:doi:10.1109/JSEN.2024.3370819
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1109/JSEN.2024.3370819
 Volltext: https://ieeexplore.ieee.org/document/10458913
 DOI: https://doi.org/10.1109/JSEN.2024.3370819
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Apnea detection
 Biomedical monitoring
 cardiorespiratory estimation
 Heart rate
 in-home continuous measurement
 Mechanical sensors
 Monitoring
 noninvasive measurement
 Sensor systems
 Sensors
 Sleep apnea
 sleep monitoring
K10plus-PPN:1920852840
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69323553   QR-Code
zum Seitenanfang