Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Schmitz, Fabian [VerfasserIn]   i
 Voigtländer, Hendrik [VerfasserIn]   i
 Jang, Hyungseok [VerfasserIn]   i
 Schlemmer, Heinz-Peter [VerfasserIn]   i
 Kauczor, Hans-Ulrich [VerfasserIn]   i
 Sedaghat, Sam [VerfasserIn]   i
Titel:Predicting the malignancy grade of soft tissue sarcomas on MRI using conventional image reading and radiomics
Verf.angabe:Fabian Schmitz, Hendrik Voigtländer, Hyungseok Jang, Heinz-Peter Schlemmer, Hans-Ulrich Kauczor and Sam Sedaghat
E-Jahr:2024
Jahr:5 October 2024
Fussnoten:Gesehen am 02.04.2025
Weitere Titel:Titel des special issue: Soft Tissue Sarcoma: From Diagnosis to Prognosis
Titel Quelle:Enthalten in: Diagnostics
Ort Quelle:Basel : MDPI, 2011
Jahr Quelle:2024
Band/Heft Quelle:14(2024), 19, special issue, Artikel-ID 2220, Seite 1-17$z17
ISSN Quelle:2075-4418
Abstract:Objectives: This study aims to investigate MRI features predicting the grade of STS malignancy using conventional image reading and radiomics. Methods: Pretherapeutic imaging data regarding size, tissue heterogeneity, peritumoral changes, necrosis, hemorrhage, and cystic degeneration were evaluated in conventional image reading. Furthermore, the tumors’ apparent diffusion coefficient (ADC) values and radiomics features were extracted and analyzed. A random forest machine learning algorithm was trained and evaluated based on the extracted features. Results: A total of 139 STS cases were included in this study. The mean tumor ADC and the ratio between tumor ADC to healthy muscle ADC were significantly lower in high-grade tumors (p = 0.001 and 0.005, respectively). Peritumoral edema (p < 0.001) and peritumoral contrast enhancement (p < 0.001) were significantly more extensive in high-grade tumors. Tumor heterogeneity was significantly increased in high-grade sarcomas, particularly in T2w- and contrast-enhanced sequences using conventional image reading (p < 0.001) as well as in the radiomics analysis (p < 0.001). Our trained random forest machine learning model predicted high-grade status with an area under the curve (AUC) of 0.97 and an F1 score of 0.93. Biopsy-underestimated tumors exhibited differences in tumor heterogeneity and peritumoral changes. Conclusions: Tumor heterogeneity is a key characteristic of high-grade STSs, which is discernible through conventional imaging reading and radiomics analysis. Higher STS grades are also associated with low ADC values, peritumoral edema, and peritumoral contrast enhancement.
DOI:doi:10.3390/diagnostics14192220
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.3390/diagnostics14192220
 kostenfrei: Volltext: https://www.mdpi.com/2075-4418/14/19/2220
 DOI: https://doi.org/10.3390/diagnostics14192220
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:machine learning
 malignancy grade
 MRI
 radiomics
 soft tissue sarcoma
K10plus-PPN:1921159359
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69326643   QR-Code
zum Seitenanfang