| Online-Ressource |
Verfasst von: | Ramakrishnan, Vignesh [VerfasserIn]  |
| Artinger, Annalena [VerfasserIn]  |
| Daza Barragan, Laura Alexandra [VerfasserIn]  |
| Daza Barragán, Jimmy Andres [VerfasserIn]  |
| Winter, Lina [VerfasserIn]  |
| Niedermair, Tanja [VerfasserIn]  |
| Itzel, Timo [VerfasserIn]  |
| Arbelaez, Pablo [VerfasserIn]  |
| Teufel, Andreas [VerfasserIn]  |
| López-Cotarelo Rodríguez-Noriega, Cristina [VerfasserIn]  |
| Brochhausen, Christoph [VerfasserIn]  |
Titel: | Nuclei Detection and Segmentation of Histopathological Images Using a Feature Pyramidal Network Variant of a Mask R-CNN |
Verf.angabe: | Vignesh Ramakrishnan, Annalena Artinger, Laura Alexandra Daza Barragan, Jimmy Daza, Lina Winter, Tanja Niedermair, Timo Itzel, Pablo Arbelaez, Andreas Teufel, Cristina L. Cotarelo and Christoph Brochhausen |
E-Jahr: | 2024 |
Jahr: | 1 October 2024 |
Umfang: | 13 S. |
Illustrationen: | Illustrationen |
Fussnoten: | Gesehen am 02.04.2025 |
Titel Quelle: | Enthalten in: Bioengineering |
Ort Quelle: | Basel : MDPI, 2014 |
Jahr Quelle: | 2024 |
Band/Heft Quelle: | 11(2024), 10, Artikel-ID 994, Seite 1-13 |
ISSN Quelle: | 2306-5354 |
Abstract: | Cell nuclei interpretation is crucial in pathological diagnostics, especially in tumor specimens. A critical step in computational pathology is to detect and analyze individual nuclear properties using segmentation algorithms. Conventionally, a semantic segmentation network is used, where individual nuclear properties are derived after post-processing a segmentation mask. In this study, we focus on showing that an object-detection-based instance segmentation network, the Mask R-CNN, after integrating it with a Feature Pyramidal Network (FPN), gives mature and reliable results for nuclei detection without the need for additional post-processing. The results were analyzed using the Kumar dataset, a public dataset with over 20,000 nuclei annotations from various organs. The dice score of the baseline Mask R-CNN improved from 76% to 83% after integration with an FPN. This was comparable with the 82.6% dice score achieved by modern semantic-segmentation-based networks. Thus, evidence is provided that an end-to-end trainable detection-based instance segmentation algorithm with minimal post-processing steps can reliably be used for the detection and analysis of individual nuclear properties. This represents a relevant task for research and diagnosis in digital pathology, which can improve the automated analysis of histopathological images. |
DOI: | doi:10.3390/bioengineering11100994 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
kostenfrei: Volltext: https://doi.org/10.3390/bioengineering11100994 |
| kostenfrei: Volltext: https://www.mdpi.com/2306-5354/11/10/994 |
| DOI: https://doi.org/10.3390/bioengineering11100994 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | artificial intelligence |
| digital pathology |
| histopathology |
| Mask R-CNN |
| nuclei detection |
K10plus-PPN: | 1921160535 |
Verknüpfungen: | → Zeitschrift |
Nuclei Detection and Segmentation of Histopathological Images Using a Feature Pyramidal Network Variant of a Mask R-CNN / Ramakrishnan, Vignesh [VerfasserIn]; 1 October 2024 (Online-Ressource)