| Online-Ressource |
Verfasst von: | Martínez Díaz, Patricia [VerfasserIn]  |
| Dasí, Albert [VerfasserIn]  |
| Goetz, Christian [VerfasserIn]  |
| Unger, Laura A [VerfasserIn]  |
| Haas, Annika [VerfasserIn]  |
| Luik, Armin [VerfasserIn]  |
| Rodríguez, Blanca [VerfasserIn]  |
| Dössel, Olaf [VerfasserIn]  |
| Loewe, Axel [VerfasserIn]  |
Titel: | Impact of effective refractory period personalization on arrhythmia vulnerability in patient-specific atrial computer models |
Verf.angabe: | Patricia Martínez Díaz, Albert Dasí, Christian Goetz, Laura A Unger, Annika Haas, Armin Luik, Blanca Rodríguez, Olaf Dössel, and Axel Loewe |
E-Jahr: | 2024 |
Jahr: | October 2024 |
Umfang: | 11 S. |
Illustrationen: | Illustrationen |
Fussnoten: | Veröffentlicht: 23 August 2024 ; Gesehen am 07.04.2025 |
Titel Quelle: | Enthalten in: Europace |
Ort Quelle: | Oxford : Oxford Univ. Press, 1999 |
Jahr Quelle: | 2024 |
Band/Heft Quelle: | 26(2024), 10 vom: Okt., Artikel-ID euae215, Seite 1-11 |
ISSN Quelle: | 1532-2092 |
Abstract: | The effective refractory period (ERP) is one of the main electrophysiological properties governing arrhythmia, yet ERP personalization is rarely performed when creating patient-specific computer models of the atria to inform clinical decision-making. This study evaluates the impact of integrating clinical ERP measurements into personalized in silico models on arrhythmia vulnerability.Clinical ERP measurements were obtained in seven patients from multiple locations in the atria. Atrial geometries from the electroanatomical mapping system were used to generate personalized anatomical atrial models. The Courtemanche M. et al. cellular model was adjusted to reproduce patient-specific ERP. Four modeling approaches were compared: homogeneous (A), heterogeneous (B), regional (C), and continuous (D) ERP distributions. Non-personalized approaches (A and B) were based on literature data, while personalized approaches (C and D) were based on patient measurements. Modeling effects were assessed on arrhythmia vulnerability and tachycardia cycle length, with sensitivity analysis on ERP measurement uncertainty. Mean vulnerability was 3.4 ± 4.0%, 7.7 ± 3.4%, 9.0 ± 5.1%, and 7.0 ± 3.6% for scenarios A-D, respectively. Mean tachycardia cycle length was 167.1 ± 12.6 ms, 158.4 ± 27.5 ms, 265.2 ± 39.9 ms, and 285.9 ± 77.3 ms for scenarios A-D, respectively. Incorporating perturbations to the measured ERP in the range of 2, 5, 10, 20, and 50 ms changed the vulnerability of the model to 5.8 ± 2.7%, 6.1 ± 3.5%, 6.9 ± 3.7%, 5.2 ± 3.5%, and 9.7 ± 10.0%, respectively.Increased ERP dispersion had a greater effect on re-entry dynamics than on vulnerability. Inducibility was higher in personalized scenarios compared with scenarios with uniformly reduced ERP; however, this effect was reversed when incorporating fibrosis informed by low-voltage areas. Effective refractory period measurement uncertainty up to 20 ms slightly influenced vulnerability. Electrophysiological personalization of atrial in silico models appears essential and requires confirmation in larger cohorts. |
DOI: | doi:10.1093/europace/euae215 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
kostenfrei: Volltext: https://doi.org/10.1093/europace/euae215 |
| kostenfrei: Volltext: https://academic.oup.com/europace/article/26/10/euae215/7739748 |
| DOI: https://doi.org/10.1093/europace/euae215 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1921656697 |
Verknüpfungen: | → Zeitschrift |
Impact of effective refractory period personalization on arrhythmia vulnerability in patient-specific atrial computer models / Martínez Díaz, Patricia [VerfasserIn]; October 2024 (Online-Ressource)