| Online-Ressource |
Verfasst von: | Prodan, George P. [VerfasserIn]  |
| Pasquato, Mario [VerfasserIn]  |
| Iorio, Giuliano [VerfasserIn]  |
| Ballone, Alessandro [VerfasserIn]  |
| Torniamenti, Stefano [VerfasserIn]  |
| Carlo, Ugo Niccolò Di [VerfasserIn]  |
| Mapelli, Michela [VerfasserIn]  |
Titel: | A machine learning framework to generate star cluster realisations |
Verf.angabe: | George P. Prodan, Mario Pasquato, Giuliano Iorio, Alessandro Ballone, Stefano Torniamenti, Ugo Niccolò Di Carlo, and Michela Mapelli |
E-Jahr: | 2024 |
Jahr: | 11 October 2024 |
Umfang: | 7 S. |
Fussnoten: | Gesehen am 11.04.2025 |
Titel Quelle: | Enthalten in: Astronomy and astrophysics |
Ort Quelle: | Les Ulis : EDP Sciences, 1969 |
Jahr Quelle: | 2024 |
Band/Heft Quelle: | 690(2024) vom: Okt., Artikel-ID A274, Seite 1-7 |
ISSN Quelle: | 1432-0746 |
Abstract: | Context. Computational astronomy has reached the stage where running a gravitational N-body simulation of a stellar system, such as a Milky Way star cluster, is computationally feasible, but a major limiting factor that remains is the ability to set up physically realistic initial conditions. Aims. We aim to obtain realistic initial conditions for N-body simulations by taking advantage of machine learning, with emphasis on reproducing small-scale interstellar distance distributions. Methods. The computational bottleneck for obtaining such distance distributions is the hydrodynamics of star formation, which ultimately determine the features of the stars, including positions, velocities, and masses. To mitigate this issue, we introduce a new method for sampling physically realistic initial conditions from a limited set of simulations using Gaussian processes. Results. We evaluated the resulting sets of initial conditions based on whether they meet tests for physical realism. We find that direct sampling based on the learned distribution of the star features fails to reproduce binary systems. Consequently, we show that physics-informed sampling algorithms solve this issue, as they are capable of generating realisations closer to reality. |
DOI: | doi:10.1051/0004-6361/202450995 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
kostenfrei: Volltext: https://doi.org/10.1051/0004-6361/202450995 |
| kostenfrei: Volltext: https://www.aanda.org/articles/aa/abs/2024/10/aa50995-24/aa50995-24.html |
| DOI: https://doi.org/10.1051/0004-6361/202450995 |
Datenträger: | Online-Ressource |
Sprache: | eng |
K10plus-PPN: | 1922503770 |
Verknüpfungen: | → Zeitschrift |
¬A¬ machine learning framework to generate star cluster realisations / Prodan, George P. [VerfasserIn]; 11 October 2024 (Online-Ressource)