Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Prodan, George P. [VerfasserIn]   i
 Pasquato, Mario [VerfasserIn]   i
 Iorio, Giuliano [VerfasserIn]   i
 Ballone, Alessandro [VerfasserIn]   i
 Torniamenti, Stefano [VerfasserIn]   i
 Carlo, Ugo Niccolò Di [VerfasserIn]   i
 Mapelli, Michela [VerfasserIn]   i
Titel:A machine learning framework to generate star cluster realisations
Verf.angabe:George P. Prodan, Mario Pasquato, Giuliano Iorio, Alessandro Ballone, Stefano Torniamenti, Ugo Niccolò Di Carlo, and Michela Mapelli
E-Jahr:2024
Jahr:11 October 2024
Umfang:7 S.
Fussnoten:Gesehen am 11.04.2025
Titel Quelle:Enthalten in: Astronomy and astrophysics
Ort Quelle:Les Ulis : EDP Sciences, 1969
Jahr Quelle:2024
Band/Heft Quelle:690(2024) vom: Okt., Artikel-ID A274, Seite 1-7
ISSN Quelle:1432-0746
Abstract:Context. Computational astronomy has reached the stage where running a gravitational N-body simulation of a stellar system, such as a Milky Way star cluster, is computationally feasible, but a major limiting factor that remains is the ability to set up physically realistic initial conditions. Aims. We aim to obtain realistic initial conditions for N-body simulations by taking advantage of machine learning, with emphasis on reproducing small-scale interstellar distance distributions. Methods. The computational bottleneck for obtaining such distance distributions is the hydrodynamics of star formation, which ultimately determine the features of the stars, including positions, velocities, and masses. To mitigate this issue, we introduce a new method for sampling physically realistic initial conditions from a limited set of simulations using Gaussian processes. Results. We evaluated the resulting sets of initial conditions based on whether they meet tests for physical realism. We find that direct sampling based on the learned distribution of the star features fails to reproduce binary systems. Consequently, we show that physics-informed sampling algorithms solve this issue, as they are capable of generating realisations closer to reality.
DOI:doi:10.1051/0004-6361/202450995
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1051/0004-6361/202450995
 kostenfrei: Volltext: https://www.aanda.org/articles/aa/abs/2024/10/aa50995-24/aa50995-24.html
 DOI: https://doi.org/10.1051/0004-6361/202450995
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1922503770
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69330400   QR-Code
zum Seitenanfang