| Online-Ressource |
Verfasst von: | Kumari, Pooja [VerfasserIn]  |
| Keck, Shaun [VerfasserIn]  |
| Sohn, Emma [VerfasserIn]  |
| Kern, Johann [VerfasserIn]  |
| Raedle, Matthias [VerfasserIn]  |
Titel: | Advanced imaging integration |
Titelzusatz: | multi-modal raman light sheet microscopy combined with zero-shot learning for denoising and super-resolution |
Verf.angabe: | Pooja Kumari, Shaun Keck, Emma Sohn, Johann Kern and Matthias Raedle |
E-Jahr: | 2024 |
Jahr: | 3 November 2024 |
Umfang: | 16 S. |
Fussnoten: | Gesehen am 24.04.2025 |
Titel Quelle: | Enthalten in: Sensors |
Ort Quelle: | Basel : MDPI, 2001 |
Jahr Quelle: | 2024 |
Band/Heft Quelle: | 24(2024), 21, Artikel-ID 7083, Seite 1-16 |
ISSN Quelle: | 1424-8220 |
Abstract: | This study presents an advanced integration of Multi-modal Raman Light Sheet Microscopy with zero-shot learning-based computational methods to significantly enhance the resolution and analysis of complex three-dimensional biological structures, such as 3D cell cultures and spheroids. The Multi-modal Raman Light Sheet Microscopy system incorporates Rayleigh scattering, Raman scattering, and fluorescence detection, enabling comprehensive, marker-free imaging of cellular architecture. These diverse modalities offer detailed spatial and molecular insights into cellular organization and interactions, critical for applications in biomedical research, drug discovery, and histological studies. To improve image quality without altering or introducing new biological information, we apply Zero-Shot Deconvolution Networks (ZS-DeconvNet), a deep-learning-based method that enhances resolution in an unsupervised manner. ZS-DeconvNet significantly refines image clarity and sharpness across multiple microscopy modalities without requiring large, labeled datasets, or introducing artifacts. By combining the strengths of multi-modal light sheet microscopy and ZS-DeconvNet, we achieve improved visualization of subcellular structures, offering clearer and more detailed representations of existing data. This approach holds significant potential for advancing high-resolution imaging in biomedical research and other related fields. |
DOI: | doi:10.3390/s24217083 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
kostenfrei: Volltext: https://doi.org/10.3390/s24217083 |
| kostenfrei: Volltext: https://www.mdpi.com/1424-8220/24/21/7083 |
| DOI: https://doi.org/10.3390/s24217083 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | deep learning |
| denoising |
| fluorescence |
| hyperspectral |
| light sheet |
| microscopy |
| multimode |
| raman scattering |
| rayleigh scattering |
| spheroid |
| super-resolution |
| zero-shot deconvolution networks |
K10plus-PPN: | 1923552929 |
Verknüpfungen: | → Zeitschrift |
Advanced imaging integration / Kumari, Pooja [VerfasserIn]; 3 November 2024 (Online-Ressource)