Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Hewitt, Katherine J. [VerfasserIn]   i
 Wiest, Isabella [VerfasserIn]   i
 Carrero, Zunamys I [VerfasserIn]   i
 Bejan, Laura [VerfasserIn]   i
 Millner, Thomas O. [VerfasserIn]   i
 Brandner, Sebastian [VerfasserIn]   i
 Kather, Jakob Nikolas [VerfasserIn]   i
Titel:Large language models as a diagnostic support tool in neuropathology
Verf.angabe:Katherine J. Hewitt, Isabella C. Wiest, Zunamys I. Carrero, Laura Bejan, Thomas O. Millner, Sebastian Brandner and Jakob Nikolas Kather
E-Jahr:2024
Jahr:November 2024
Umfang:7 S.
Fussnoten:Online veröffentlicht: 06 November 2024 ; Gesehen am 25.04.2025
Titel Quelle:Enthalten in: The journal of pathology: clinical research
Ort Quelle:Chichester : Wiley, 2015
Jahr Quelle:2024
Band/Heft Quelle:10(2024), 6, Artikel-ID e70009, Seite 1-7
ISSN Quelle:2056-4538
Abstract:The WHO guidelines for classifying central nervous system (CNS) tumours are changing considerably with each release. The classification of CNS tumours is uniquely complex among most other solid tumours as it incorporates not just morphology, but also genetic and epigenetic features. Keeping current with these changes across medical fields can be challenging, even for clinical specialists. Large language models (LLMs) have demonstrated their ability to parse and process complex medical text, but their utility in neuro-oncology has not been systematically tested. We hypothesised that LLMs can effectively diagnose neuro-oncology cases from free-text histopathology reports according to the latest WHO guidelines. To test this hypothesis, we evaluated the performance of ChatGPT-4o, Claude-3.5-sonnet, and Llama3 across 30 challenging neuropathology cases, which each presented a complex mix of morphological and genetic information relevant to the diagnosis. Furthermore, we integrated these models with the latest WHO guidelines through Retrieval-Augmented Generation (RAG) and again assessed their diagnostic accuracy. Our data show that LLMs equipped with RAG, but not without RAG, can accurately diagnose the neuropathological tumour subtype in 90% of the tested cases. This study lays the groundwork for a new generation of computational tools that can assist neuropathologists in their daily reporting practice.
DOI:doi:10.1002/2056-4538.70009
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1002/2056-4538.70009
 kostenfrei: Volltext: https://onlinelibrary.wiley.com/doi/abs/10.1002/2056-4538.70009
 DOI: https://doi.org/10.1002/2056-4538.70009
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:adult-type diffuse gliomas
 decision support tools
 large language models
 neuropathology
K10plus-PPN:1923693131
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69339199   QR-Code
zum Seitenanfang