Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Lee, Eun Ryung [VerfasserIn]  |
| Park, Seyoung [VerfasserIn]  |
| Mammen, Enno [VerfasserIn]  |
| Park, Byeong U. [VerfasserIn]  |
Titel: | Efficient functional Lasso kernel smoothing for high-dimensional additive regression |
Verf.angabe: | Eun Ryung Lee, Seyoung Park, Enno Mammen and Byeong U. Park |
E-Jahr: | 2024 |
Jahr: | August 2024 |
Umfang: | 33 S. |
Fussnoten: | Gesehen am 28.04.2025 |
Titel Quelle: | Enthalten in: The annals of statistics |
Ort Quelle: | Hayward, Calif. : IMS Business Off., 1973 |
Jahr Quelle: | 2024 |
Band/Heft Quelle: | 52(2024), 4 vom: Aug., Seite 1741-1773 |
ISSN Quelle: | 2168-8966 |
Abstract: | Smooth backfitting has been proposed and proved as a powerful nonparametric estimation technique for additive regression models in various settings. Existing studies are restricted to cases with a moderate number of covariates and are not directly applicable to high dimensional settings. In this paper, we develop new kernel estimators based on the idea of smooth backfitting for high dimensional additive models. We introduce a novel penalization scheme, combining the idea of functional Lasso with the smooth backfitting technique. We investigate the theoretical properties of the functional Lasso smooth backfitting estimation. For the implementation of the proposed method, we devise a simple iterative algorithm where the iteration is defined by a truncated projection operator. The algorithm has only an additional thresholding operator over the projection-based iteration of the smooth backfitting algorithm. We further present a debiased version of the proposed estimator with implementation details, and investigate its theoretical properties for statistical inference. We demonstrate the finite sample performance of the methods via simulation and real data analysis. |
DOI: | doi:10.1214/24-AOS2415 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
kostenfrei: Volltext: https://doi.org/10.1214/24-AOS2415 |
| kostenfrei: Volltext: https://projecteuclid.org/journals/annals-of-statistics/volume-52/issue-4/Efficient-functional-Lasso-kernel-smoothing-fo ... |
| DOI: https://doi.org/10.1214/24-AOS2415 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | 62G05 |
| 62G08 |
| 62G20 |
| Additive models |
| debiasing |
| functional Lasso |
| kernel smoothing |
| Nonparametric regression |
| Penalization |
| smooth backfitting |
| Sparse estimation |
K10plus-PPN: | 1923795627 |
Verknüpfungen: | → Zeitschrift |
Efficient functional Lasso kernel smoothing for high-dimensional additive regression / Lee, Eun Ryung [VerfasserIn]; August 2024 (Online-Ressource)
69339920