Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Rashidi, Gabriel [VerfasserIn]   i
 Bounias, Dimitrios [VerfasserIn]   i
 Bujotzek, Markus [VerfasserIn]   i
 Martínez Mora, Andrés [VerfasserIn]   i
 Neher, Peter [VerfasserIn]   i
 Maier-Hein, Klaus H. [VerfasserIn]   i
Titel:The potential of federated learning for self-configuring medical object detection in heterogeneous data distributions
Verf.angabe:Gabriel Rashidi, Dimitrios Bounias, Markus Bujotzek, Andrés Martínez Mora, Peter Neher and Klaus H. Maier-Hein
E-Jahr:2024
Jahr:11 October 2024
Umfang:12 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 29.04.2025
Titel Quelle:Enthalten in: Scientific reports
Ort Quelle:[London] : Springer Nature, 2011
Jahr Quelle:2024
Band/Heft Quelle:14(2024), Artikel-ID 23844, Seite 1-12
ISSN Quelle:2045-2322
Abstract:Medical Object Detection (MOD) is a clinically relevant image processing method that locates structures of interest in radiological image data at object-level using bounding boxes. High-performing MOD models necessitate large datasets accurately reflecting the feature distribution of the corresponding problem domain. However, strict privacy regulations protecting patient data often hinder data consolidation, negatively affecting the performance and generalization of MOD models. Federated Learning (FL) offers a solution by enabling model training while the data remain at its original source institution. While existing FL solutions for medical image classification and segmentation demonstrate promising performance, FL for MOD remains largely unexplored. Motivated by this lack of technical solutions, we present an open-source, self-configuring and task-agnostic federated MOD framework. It integrates the FL framework Flower with nnDetection, a state-of-the-art MOD framework and provides several FL aggregation strategies. Furthermore, we evaluate model performance by creating simulated Independent Identically Distributed (IID) and non-IID scenarios, utilizing the publicly available datasets. Additionally, a detailed analysis of the distributions and characteristics of these datasets offers insights into how they can impact performance. Our framework’s implementation demonstrates the feasibility of federated self-configuring MOD in non-IID scenarios and facilitates the development of MOD models trained on large distributed databases.
DOI:doi:10.1038/s41598-024-74577-0
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1038/s41598-024-74577-0
 Volltext: https://www.nature.com/articles/s41598-024-74577-0
 DOI: https://doi.org/10.1038/s41598-024-74577-0
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Computer science
 Image processing
 Information technology
 Machine learning
 Medical imaging
K10plus-PPN:1923895214
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69340179   QR-Code
zum Seitenanfang