Navigation überspringen
Universitätsbibliothek Heidelberg
Status: bestellen
> Bestellen/Vormerken
Signatur: LN-U 10-20113   QR-Code
Standort: Zweigstelle Neuenheim / Lehrbuchsammlung  3D-Plan
Exemplare: siehe unten
Verfasst von:He, Fengxiang [VerfasserIn]   i
 Tao, Dacheng [VerfasserIn]   i
Titel:Foundations of deep learning
Verf.angabe:Fengxiang He, Dacheng Tao
Verlagsort:Singapore
Verlag:Springer
E-Jahr:2025
Jahr:[2025]
Umfang:xiv, 292 Seiten
Illustrationen:Diagramme
Gesamttitel/Reihe:Machine learning: foundations, methodologies, and applications
Fussnoten:Literaturangaben
ISBN:978-981-16-8232-2
Abstract:Deep learning has significantly reshaped a variety of technologies, such as image processing, natural language processing, and audio processing. The excellent generalizability of deep learning is like a "cloud" to conventional complexity-based learning theory: the over-parameterization of deep learning makes almost all existing tools vacuous. This irreconciliation considerably undermines the confidence of deploying deep learning to security-critical areas, including autonomous vehicles and medical diagnosis, where small algorithmic mistakes can lead to fatal disasters. This book seeks to explaining the excellent generalizability, including generalization analysis via the size-independent complexity measures, the role of optimization in understanding the generalizability, and the relationship between generalizability and ethical/security issues. The efforts to understand the excellent generalizability are following two major paths: (1) developing size-independent complexity measures, which can evaluate the "effective" hypothesis complexity that can be learned, instead of the whole hypothesis space; and (2) modelling the learned hypothesis through stochastic gradient methods, the dominant optimizers in deep learning, via stochastic differential functions and the geometry of the associated loss functions. Related works discover that over-parameterization surprisingly bring many good properties to the loss functions. Rising concerns of deep learning are seen on the ethical and security issues, including privacy preservation and adversarial robustness. Related works also reveal an interplay between them and generalizability: a good generalizability usually means a good privacy-preserving ability; and more robust algorithms might have a worse generalizability. We expect readers can have a big picture of the current knowledge in deep learning theory, understand how the deep learning theory can guide new algorithm designing, and identify future research directions. Readers need knowledge of calculus, linear algebra, probability, statistics, and statistical learning theory
URL:Cover: https://www.dietmardreier.de/annot/564C42696D677C7C393738393831313638323332327C7C434F50.jpg?sq=41
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Online-Ausgabe: He, Fengxiang: Foundations of Deep Learning. - 1st ed. 2025.. - Singapore : Springer Nature Singapore, 2025. - 1 Online-Ressource(XIV, 292 p. 21 illus., 17 illus. in color.)
Sach-SW:Artificial intelligence
 COMPUTERS / Artificial Intelligence
 COMPUTERS / Mathematical & Statistical Software
 Künstliche Intelligenz
 MATHEMATICS / Applied
 MATHEMATICS / Probability & Statistics / General
 Machine learning
 Maschinelles Lernen
 Mathematical & statistical software
 Mathematical modelling
 Mathematische Modellierung
 TECHNOLOGY & ENGINEERING / Engineering (General)
 Theoretische Informatik
 Wahrscheinlichkeitsrechnung und Statistik
K10plus-PPN:1916826059
Exemplare:

SignaturQRStandortStatus
LN-U 10-20113QR-CodeZweigstelle Neuenheim / Lehrbuchsammlung3D-Planbestellbar
Mediennummer: 20226892

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69340226   QR-Code
zum Seitenanfang