Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Lombardo, Davide [VerfasserIn]   i
Titel:L-Functions
Titelzusatz:An Elementary Introduction
Verf.angabe:by Davide Lombardo
Ausgabe:1st ed. 2025.
Verlagsort:Cham
Verlag:Springer Nature Switzerland
Jahr:2025
Umfang:1 Online-Ressource(XIV, 261 p. 4 illus., 1 illus. in color.)
Gesamttitel/Reihe:La Matematica per il 3+2 ; 171
ISBN:978-3-031-85145-2
Abstract:- Part I Classical ????-functions and applications -- 1. What is an ????-function? -- 2. The Prime Number Theorem -- 3. Review of Algebraic Number Theory -- 4. A Primer of Representation Theory -- 5. The ????-Function of a Complex Galois Representation -- 6. Dirichlet’s Theorem on Arithmetic Progressions -- 7. The Chebotarev Density Theorem -- Part II Prerequisites for Tate’s Thesis -- 8. The Haar Measure -- 9. Abstract Fourier Analysis -- 10. Review of Local Fields -- 11. Restricted Direct Products -- Part III Tate’s Thesis -- 12. The Local Theory -- 13. The Global Theory -- 14. Hecke ????-Functions -- 15. Recovering the Classical Theory -- 16. An Extended Example: the ????-Function of a CM Elliptic Curve.
 This book provides an accessible introduction to the theory of L-functions, emphasising their central role in number theory and their direct applications to key results. Designed to be elementary, it offers readers a clear pathway into the subject, starting from minimal background. It describes several important classes of L-functions — Riemann and Dedekind zeta functions, Dirichlet L-functions, and Hecke L-functions (for characters with finite image) — by showing how they are all special cases of the construction, due to Artin, of the L-function of a Galois representation. The analytic properties of abelian L-functions are presented in detail, including the full content of Tate's thesis, which establishes analytic continuation and functional equations via harmonic analysis. General Hecke L-functions are also discussed, using the modern perspective of idèles and adèles to connect their analytic theory with the representation-theoretic approach of Artin's L-functions. A distinguishing feature of this book is its accessibility: while largely avoiding arithmetic geometry, it provides introductions to both algebraic number theory and key aspects of representation theory. This approach ensures that the material is accessible to both beginning graduate students and advanced undergraduates. Applications play a central role throughout, highlighting how L-functions underpin significant results in number theory. The book provides complete proofs of the prime number theorem, Dirichlet's theorem on primes in arithmetic progressions, Chebotarev's density theorem, and the analytic class number formula, demonstrating the power of the theory in solving classical problems. It serves as an ideal introduction for advanced undergraduates and beginning graduate students and can also be a useful reference for preparing a course on the subject.
DOI:doi:10.1007/978-3-031-85145-2
URL:Resolving-System: https://doi.org/10.1007/978-3-031-85145-2
 DOI: https://doi.org/10.1007/978-3-031-85145-2
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe: Lombardo, Davide: L-functions. - Cham : Springer Nature Switzerland, 2025. - xiv, 261 Seiten
K10plus-PPN:1924006375
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69340589   QR-Code
zum Seitenanfang