Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Hu, Jun [VerfasserIn]   i
 Wang, Zidong [VerfasserIn]   i
 Jia, Chaoqing [VerfasserIn]   i
Titel:Variance-Constrained Filtering for Stochastic Complex Systems
Titelzusatz:Theories and Algorithms
Verf.angabe:by Jun Hu, Zidong Wang, Chaoqing Jia
Ausgabe:1st ed. 2025.
Verlagsort:Singapore
Verlag:Springer Nature Singapore
Jahr:2025
Umfang:1 Online-Ressource(XV, 310 p. 127 illus., 121 illus. in color.)
Gesamttitel/Reihe:Intelligent Control and Learning Systems ; 18
ISBN:978-981-9626-37-3
Abstract:Introduction -- Recursive Filtering and Boundedness Analysis with ROQ -- Resilient Filtering with Stochastic Uncertainties and Incomplete Measurements -- Event-Triggered Resilient Filtering with Stochastic Uncertainties and SPDs -- Event-triggered Filtering with Missing Measurements -- Fault Estimation Against Randomly Occurring Deception Attacks -- Fault Estimation with Packet Dropouts and ROUs -- Fault Estimation with Randomly Occurring Faults and Sensor Saturations -- State Estimation for Complex Networks with Missing Measurements -- Quantized State Estimation for Complex Networks with Uncertain Inner Coupling -- Event-Based State Estimation for Complex Networks under UOPs -- Event-Based State Estimation for Complex Networks with Fading Observations and UST -- State Estimation for Complex Networks with Uncertain Observations and Coupling Strength -- Conclusions and Future Work.
 This book is concerned with the variance-constrained optimized filtering problems and their potential applications for nonlinear time-varying dynamical systems. The distinguished features of this book are highlighted as follows. (1) A unified framework is provided for handling the variance-constrained filtering problems of nonlinear time-varying dynamical systems with incomplete information. (2) The application potentials of variance-constrained optimized filtering in networked time-varying dynamical systems are outlined. It contains some new concepts, new models and new methodologies with practical significance in control engineering and signal processing. It is a collection of several research results and thereby serves as a useful reference for upper undergraduate, postgraduate and engineers who are interested in studying (i) the variance-constrained filtering, (ii) recent advances affected by incomplete information and (iii) potential applications in practical engineering systems.
DOI:doi:10.1007/978-981-96-2637-3
URL:Resolving-System: https://doi.org/10.1007/978-981-96-2637-3
 DOI: https://doi.org/10.1007/978-981-96-2637-3
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe: Hu, Jun: Variance-constrained filtering for stochastic complex systems. - Singapore : Springer Nature Singapore, 2025. - xv, 310 Seiten
K10plus-PPN:1924769212
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69342306   QR-Code
zum Seitenanfang