Navigation überspringen
Universitätsbibliothek Heidelberg
Standort: ---
Exemplare: ---
 Online-Ressource
Verfasst von:Zamastil, Jaroslav [VerfasserIn]   i
 Uhlířová, Tereza [VerfasserIn]   i
Titel:An Algebraic Approach to the Many-Electron Problem
Verf.angabe:by Jaroslav Zamastil, Tereza Uhlířová
Ausgabe:1st ed. 2025.
Verlagsort:Cham
 Cham
Verlag:Springer Nature Switzerland
 Imprint: Springer
E-Jahr:2025
Jahr:2025.
 2025.
Umfang:1 Online-Ressource(VIII, 71 p.)
Gesamttitel/Reihe:SpringerBriefs in Physics
ISBN:978-3-031-87825-1
Abstract:Chapter 1: Quantized electron field -- Chapter 2: Hartree-Fock approximation -- Chapter 3: Coupled cluster method -- Chapter 4: Further developments.
 This book presents an algebraic approach to the coupled cluster method for many-electron systems, pioneered by Josef Paldus. Using field methods along with an algebraic, rather than diagrammatic, approach facilitates a way of deriving the coupled cluster method which is readily understandable at the graduate level. The book begins with the notion of the quantized electron field and shows how the N-electron Hamiltonian can be expressed in its language. This is followed by introduction of the Fermi vacuum and derivation of the Hartree-Fock equations along with conditions for stability of their solutions. Following this groundwork, the book discusses a method of configuration interaction to account for dynamical correlations between electrons, pointing out the size-extensivity problem, and showing how this problem is solved with the coupled cluster approach. This is followed by derivation of the coupled cluster equations in spin-orbital form. Finally, the book explores practical aspects, showing how one may take advantage of permutational and spin symmetries, and how to solve coupled-cluster equations, illustrated by the Hubbard model of benzene, the simplest quasi-realistic model of electron correlation.
DOI:doi:10.1007/978-3-031-87825-1
URL:Resolving-System: https://doi.org/10.1007/978-3-031-87825-1
 DOI: https://doi.org/10.1007/978-3-031-87825-1
Datenträger:Online-Ressource
Sprache:eng
Bibliogr. Hinweis:Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe
 Erscheint auch als : Druck-Ausgabe
K10plus-PPN:1925485986
 
 
Lokale URL UB: Zum Volltext

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69344287   QR-Code
zum Seitenanfang