| Online-Ressource |
Verfasst von: | Saffari, Afshin [VerfasserIn]  |
| Niesert, Moritz [VerfasserIn]  |
| Cannet, Claire [VerfasserIn]  |
| Blaschek, Astrid [VerfasserIn]  |
| Hahn, Andreas [VerfasserIn]  |
| Johannsen, Jessika [VerfasserIn]  |
| Kockaya, Musa [VerfasserIn]  |
| Kölbel, Heike [VerfasserIn]  |
| Hoffmann, Georg F. [VerfasserIn]  |
| Claus, Peter [VerfasserIn]  |
| Kölker, Stefan [VerfasserIn]  |
| Müller-Felber, Wolfgang [VerfasserIn]  |
| Roos, Andreas [VerfasserIn]  |
| Schara-Schmidt, Ulrike [VerfasserIn]  |
| Trefz, Friedrich K. [VerfasserIn]  |
| Vill, Katharina [VerfasserIn]  |
| Wick, Wolfgang [VerfasserIn]  |
| Weiler, Markus [VerfasserIn]  |
| Okun, Jürgen G. [VerfasserIn]  |
| Ziegler, Andreas [VerfasserIn]  |
Titel: | Identification of biochemical determinants for diagnosis and prediction of severity in 5q spinal muscular atrophy using 1H-nuclear magnetic resonance metabolic profiling in patient-derived biofluids |
Verf.angabe: | Afshin Saffari, Moritz Niesert, Claire Cannet, Astrid Blaschek, Andreas Hahn, Jessika Johannsen, Musa Kockaya, Heike Kölbel, Georg F. Hoffmann, Peter Claus, Stefan Kölker, Wolfgang Müller-Felber, Andreas Roos, Ulrike Schara-Schmidt, Friedrich K. Trefz, Katharina Vill, Wolfgang Wick, Markus Weiler, Jürgen G. Okun and Andreas Ziegler |
E-Jahr: | 2024 |
Jahr: | 12 November 2024 |
Umfang: | 19 S. |
Illustrationen: | Illustrationen |
Fussnoten: | Die Ziffer 1 ist im Titel hochgestellt ; Gesehen am 20.05.2025 |
Titel Quelle: | Enthalten in: International journal of molecular sciences |
Ort Quelle: | Basel : Molecular Diversity Preservation International, 2000 |
Jahr Quelle: | 2024 |
Band/Heft Quelle: | 25(2024), 22, Artikel-ID 12123, Seite 1-19 |
ISSN Quelle: | 1422-0067 |
| 1661-6596 |
Abstract: | This study explores the potential of 1H-NMR spectroscopy-based metabolic profiling in various biofluids as a diagnostic and predictive modality to assess disease severity in individuals with 5q spinal muscular atrophy. A total of 213 biosamples (urine, plasma, and CSF) from 153 treatment-naïve patients with SMA across five German centers were analyzed using 1H-NMR spectroscopy. Prediction models were developed using machine learning algorithms which enabled the patients with SMA to be grouped according to disease severity. A quantitative enrichment analysis was employed to identify metabolic pathways associated with disease progression. The results demonstrate high sensitivity (84-91%) and specificity (91-94%) in distinguishing treatment-naïve patients with SMA from controls across all biofluids. The urinary and plasma profiles differentiated between early-onset (type I) and later-onset (type II/III) SMA with over 80% accuracy. Key metabolic differences involved alterations in energy and amino acid metabolism. This study suggests that 1H-NMR spectroscopy based metabolic profiling may be a promising, non-invasive tool to identify patients with SMA and for severity stratification, potentially complementing current diagnostic and prognostic strategies in SMA management. |
DOI: | doi:10.3390/ijms252212123 |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
kostenfrei: Volltext: https://doi.org/10.3390/ijms252212123 |
| kostenfrei: Volltext: https://www.mdpi.com/1422-0067/25/22/12123 |
| DOI: https://doi.org/10.3390/ijms252212123 |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | 1H-NMR spectroscopy |
| metabolic profiling |
| metabolomics |
| spinal muscular atrophy |
K10plus-PPN: | 1926080106 |
Verknüpfungen: | → Zeitschrift |
Identification of biochemical determinants for diagnosis and prediction of severity in 5q spinal muscular atrophy using 1H-nuclear magnetic resonance metabolic profiling in patient-derived biofluids / Saffari, Afshin [VerfasserIn]; 12 November 2024 (Online-Ressource)