Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Nohman, Amin [VerfasserIn]   i
 Ivren, Meltem [VerfasserIn]   i
 Alhalabi, Obada [VerfasserIn]   i
 Sahm, Felix [VerfasserIn]   i
 Dao Trong, Huy Philip [VerfasserIn]   i
 Krieg, Sandro [VerfasserIn]   i
 Unterberg, Andreas [VerfasserIn]   i
 Scherer, Moritz [VerfasserIn]   i
Titel:Intraoperative label-free tissue diagnostics using a stimulated Raman histology imaging system with artificial intelligence
Titelzusatz:an initial experience
Verf.angabe:Amin I. Nohman, Meltem Ivren, Obada T. Alhalabi, Felix Sahm, Philip Dao Trong, Sandro M. Krieg, Andreas Unterberg, Moritz Scherer
E-Jahr:2024
Jahr:December 2024
Umfang:7 S.
Illustrationen:Illustrationen
Fussnoten:Online verfügbar 17 November 2024, Version des Artikels 19 November 2024 ; Gesehen am 23.05.2025
Titel Quelle:Enthalten in: Clinical neurology and neurosurgery
Ort Quelle:Amsterdam [u.a.] : Elsevier Science, 1974
Jahr Quelle:2024
Band/Heft Quelle:247(2024) vom: Dez., Artikel-ID 108646, Seite 1-7
ISSN Quelle:1872-6968
Abstract:Background - Accurate intraoperative tissue diagnostics could impact on decision making regarding the extent of resection (EOR) during brain tumor surgery. Stimulated Raman histology (SRH) is a label-free optical imaging method that uses different biochemical properties of tissue to generate a hematoxylin-eosin-like image and, in combination with an artificial intelligence-based image classifier, offers the opportunity to obtain rapid intraoperative tissue diagnoses. - Objective - The goal of this study was to report on our initial experience with SRH to evaluate its accuracy in comparison to final tissue diagnosis. - Materials & methods - We evaluated 70 consecutive adult cases with brain tumors. We compared results of the three different SRH classifier (diagnostic, molecular and tumor/non-tumor) to the respective final histopathological result. Similarly, we evaluated the isocitrate dehydrogenase (IDH) mutations in 18 patients using SRH. Lastly, we compared SRH results of samples taken from the tumor margins with early postoperative MRI. Prediction accuracy was evaluated by logistic regression and Receiver Operator Curve (ROC) analysis. - Results - We included 19 gliomas, 9 metastases, 22 meningiomas and 14 other tumor entities. Regarding accuracy of intraoperative SRH predictions, regression analysis showed an Area Under the Curve (AUC) of 0.77 (95% C.I. 0.64-0.89, p = 0.0008), suggesting agreement of predictions with final diagnosis. For specific tumor entities, variable accuracies were observed: The highest accuracy was obtained for meningiomas followed by high-grade glioma. IDH mutations were predicted with an AUC of 0.93 (95% C.I. 0.88-0.98; p < 0.0001). The SRH examination of tissue samples from tumor margins corresponded with postoperative MRI in 4 out of 5 cases. - Conclusion - Our initial experience with SRH shows that this novel imaging technique is a promising approach to obtain rapid intraoperative tissue diagnosis to guide surgical decision making based on histology and cell-density. With further refinement of AI-based automated image classification and a better integration into the surgical workflow, prediction accuracy and reliability could be improved.
DOI:doi:10.1016/j.clineuro.2024.108646
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

kostenfrei: Volltext: https://doi.org/10.1016/j.clineuro.2024.108646
 kostenfrei: Volltext: https://www.sciencedirect.com/science/article/pii/S030384672400533X
 DOI: https://doi.org/10.1016/j.clineuro.2024.108646
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Extent of resection
 IDH-mutation
 Molecular guided resection
 Precision oncology
 Stimulated Raman histology
K10plus-PPN:1926393880
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69347639   QR-Code
zum Seitenanfang