Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Shi, Lei [VerfasserIn]   i
 Schröder, Markus [VerfasserIn]   i
 Meyer, Hans-Dieter [VerfasserIn]   i
 Peláez, Daniel [VerfasserIn]   i
 Wodtke, Alec Michael [VerfasserIn]   i
 Golibrzuch, Kai [VerfasserIn]   i
 Schönemann, Anna-Maria [VerfasserIn]   i
 Kandratsenka, Alexander [VerfasserIn]   i
 Gatti, Fabien [VerfasserIn]   i
Titel:Full quantum dynamics study for H atom scattering from graphene
Verf.angabe:Lei Shi, Markus Schröder, Hans-Dieter Meyer, Daniel Peláez, Alec M. Wodtke, Kai Golibrzuch, Anna-Maria Schönemann, Alexander Kandratsenka and Fabien Gatti
E-Jahr:2025
Jahr:January 14, 2025
Umfang:12 S.
Illustrationen:Illustrationen
Fussnoten:Gesehen am 23.05.2025
Titel Quelle:Enthalten in: The journal of physical chemistry. A, Molecules, clusters, and aerosols
Ort Quelle:Washington, DC : American Chemical Society, 1997
Jahr Quelle:2025
Band/Heft Quelle:129(2025), 7, Seite 1896-1907
ISSN Quelle:1520-5215
Abstract:This study deals with the understanding of hydrogen atom scattering from graphene, a process critical for exploring C-H bond formation and energy transfer during atom surface collision. In our previous work [Shi, L.; J. Chem. Phys. 2023, 159, 194102], starting from a cell with 24 carbon atoms treated periodically, we have achieved quantum dynamics (QD) simulations with a reduced-dimensional model (15D) and a simulation in full dimensionality (75D). In the former work, the H atom attacked the top of a single C atom, enabling a comparison of QD simulation results to classical molecular dynamics (cMD). Our approach required the use of sophisticated techniques such as Monte Carlo canonical polyadic decomposition (MCCPD) and multilayer multiconfiguration time-dependent Hartree (ML-MCTDH), as well as further development of quantum flux calculations. We could benchmark our calculations by comparison to cMD calculations. We now refined our method to better mimic experimental conditions. Specifically, rather than sending the H atom to a specific position on the surface, we employed a plane wave for the H atom in directions parallel to the surface. Key findings for these new simulations include the identification of discrepancies between classical molecular dynamics (cMD) simulations and experiments, which are attributed to both the potential energy surface (PES) and quantum effects. Additionally, this study sheds light on the role of classical collective normal modes during collisions, providing insights into energy transfer processes. The results validate the robustness of our simulation methodologies and highlight the importance of considering quantum mechanical effects in the study of hydrogen-graphene interactions.
DOI:doi:10.1021/acs.jpca.4c06712
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1021/acs.jpca.4c06712
 Volltext: https://pubs.acs.org/doi/10.1021/acs.jpca.4c06712
 DOI: https://doi.org/10.1021/acs.jpca.4c06712
Datenträger:Online-Ressource
Sprache:eng
K10plus-PPN:1926406060
Verknüpfungen:→ Zeitung

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69347687   QR-Code
zum Seitenanfang