Status: Bibliographieeintrag
Standort: ---
Exemplare:
---
| Online-Ressource |
Verfasst von: | Zhou, Yitian [VerfasserIn]  |
| Pirmann, Sebastian [VerfasserIn]  |
| Lauschke, Volker Martin [VerfasserIn]  |
Titel: | APF2 |
Titelzusatz: | an improved ensemble method for pharmacogenomic variant effect prediction |
Verf.angabe: | Yitian Zhou, Sebastian Pirmann and Volker M. Lauschke |
Jahr: | 2024 |
Umfang: | 11 S. |
Illustrationen: | Illustrationen |
Fussnoten: | Published online: 27 May 2024 ; Gesehen am 04.06.2025 |
Titel Quelle: | Enthalten in: The pharmacogenomics journal |
Ort Quelle: | Basingstoke : Nature Publishing Group, 2001 |
Jahr Quelle: | 2024 |
Band/Heft Quelle: | 24(2024), Artikel-ID 17, Seite 1-11 |
ISSN Quelle: | 1473-1150 |
Abstract: | Lack of efficacy or adverse drug response are common phenomena in pharmacological therapy causing considerable morbidity and mortality. It is estimated that 20-30% of this variability in drug response stems from variations in genes encoding drug targets or factors involved in drug disposition. Leveraging such pharmacogenomic information for the preemptive identification of patients who would benefit from dose adjustments or alternative medications thus constitutes an important frontier of precision medicine. Computational methods can be used to predict the functional effects of variant of unknown significance. However, their performance on pharmacogenomic variant data has been lackluster. To overcome this limitation, we previously developed an ensemble classifier, termed APF, specifically designed for pharmacogenomic variant prediction. Here, we aimed to further improve predictions by leveraging recent key advances in the prediction of protein folding based on deep neural networks. Benchmarking of 28 variant effect predictors on 530 pharmacogenetic missense variants revealed that structural predictions using AlphaMissense were most specific, whereas APF exhibited the most balanced performance. We then developed a new tool, APF2, by optimizing algorithm parametrization of the top performing algorithms for pharmacogenomic variations and aggregating their predictions into a unified ensemble score. Importantly, APF2 provides quantitative variant effect estimates that correlate well with experimental results (R2 = 0.91, p = 0.003) and predicts the functional impact of pharmacogenomic variants with higher accuracy than previous methods, particularly for clinically relevant variations with actionable pharmacogenomic guidelines. We furthermore demonstrate better performance (92% accuracy) on an independent test set of 146 variants across 61 pharmacogenes not used for model training or validation. Application of APF2 to population-scale sequencing data from over 800,000 individuals revealed drastic ethnogeographic differences with important implications for pharmacotherapy. We thus think that APF2 holds the potential to improve the translation of genetic information into pharmacogenetic recommendations, thereby facilitating the use of Next-Generation Sequencing data for stratified medicine. |
DOI: | doi:10.1038/s41397-024-00338-x |
URL: | Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.
kostenfrei: Volltext: https://doi.org/10.1038/s41397-024-00338-x |
| kostenfrei: Volltext: https://www.nature.com/articles/s41397-024-00338-x |
| DOI: https://doi.org/10.1038/s41397-024-00338-x |
Datenträger: | Online-Ressource |
Sprache: | eng |
Sach-SW: | Genetics research |
| Predictive markers |
K10plus-PPN: | 192747602X |
Verknüpfungen: | → Zeitschrift |
APF2 / Zhou, Yitian [VerfasserIn]; 2024 (Online-Ressource)
69353711