Navigation überspringen
Universitätsbibliothek Heidelberg
Status: Bibliographieeintrag

Verfügbarkeit
Standort: ---
Exemplare: ---
heiBIB
 Online-Ressource
Verfasst von:Dillinger, Daniel [VerfasserIn]   i
 Waldeck, Stephan [VerfasserIn]   i
 Overhoff, Daniel [VerfasserIn]   i
 Faby, Sebastian [VerfasserIn]   i
 Jürgens, Markus [VerfasserIn]   i
 Schmidt, Bernhard [VerfasserIn]   i
 Hesse, Albrecht [VerfasserIn]   i
 Schoch, Justine [VerfasserIn]   i
 Schmelz, Hans [VerfasserIn]   i
 Stoll, Rico [VerfasserIn]   i
 Nestler, Tim [VerfasserIn]   i
Titel:Automated kidney stone composition analysis with photon-counting detector CT, a performance study
Titelzusatz:a phantom study
Verf.angabe:Daniel Dillinger, Stephan Waldeck, Daniel Overhoff, Sebastian Faby, Markus Jürgens, Bernhard Schmidt, Albrecht Hesse, Justine Schoch, Hans Schmelz, Rico Stoll, Tim Nestler
E-Jahr:2025
Jahr:April 2025
Umfang:8 S.
Illustrationen:Diagramme
Fussnoten:Online veröffentlicht: 15. November 2024, Artikelversion: 8. April 2025 ; Gesehen am 05.06.2025
Titel Quelle:Enthalten in: Academic radiology
Ort Quelle:Philadelphia, PA [u.a.] : Elsevier, 1994
Jahr Quelle:2025
Band/Heft Quelle:32(2025), 4 vom: Apr., Seite 2005-2012
ISSN Quelle:1878-4046
Abstract:Background - For treatment of urolithiasis, the stone composition is of particular interest, as uric acid (UA) stones can be treated by chemolitholysis. In this ex vivo study, we employed an advanced composition analysis approach for urolithiasis utilizing spectral data obtained from a photon-counting detector CT (PCDCT) to differentiate UA and non-UA stones. Our primary objective was to assess the accuracy of this analysis method. - Methods - A total of 148 urinary stones with a known composition that was measured by the standard reference method infrared spectroscopy (reference) were placed in an abdomen phantom and scanned in the PCDCT. Our objectives were to assess the stone detection rates of PCDCT and the accuracy of the prediction of the stone composition in UA vs non-UA compared to the reference. - Results - Automated detection recognized 86.5% of all stones, with best detection rate for stones larger > 5 mm in diameter (95.4%, 88.8% for stones larger than 3 mm, 94.7% for stones larger than 4 mm). Depending on the volume, we found a recognition rate of 92.8% for stones larger than 20 mm3 and 94.0% for stones with more than 30 mm3. Prediction of UA composition showed an overall sensitivity and a positive predictive value of 66.7% and a specificity and negative predictive value of 94.5%. Best diagnostic values volume wise were found by only including stones with a larger volume than 30 mm3, there we found a sensitivity of 91.7%, and a specificity of 92.4%. Sensitivity in dependance of the largest diameter was best for stones larger than 5 mm (85.7%), but specificity decreased with increasing diameter (to 91.3%). - Conclusion - Automated urinary stone composition analysis with PCDCT showed a good automated detection rate of 86.5% up to 95.4% depending on stone diameter. The differentiation between non-UA and UA stones is performed with an NPV of 94.5% and a PPV of 66.7%. The prediction probability of non-UA stones was very good. This means the automatic detection and differentiation algorithm can identify the patients which will not profit from chemolitholysis.
DOI:doi:10.1016/j.acra.2024.10.045
URL:Bitte beachten Sie: Dies ist ein Bibliographieeintrag. Ein Volltextzugriff für Mitglieder der Universität besteht hier nur, falls für die entsprechende Zeitschrift/den entsprechenden Sammelband ein Abonnement besteht oder es sich um einen OpenAccess-Titel handelt.

Volltext: https://doi.org/10.1016/j.acra.2024.10.045
 Volltext: https://www.sciencedirect.com/science/article/pii/S1076633224008328
 DOI: https://doi.org/10.1016/j.acra.2024.10.045
Datenträger:Online-Ressource
Sprache:eng
Sach-SW:Automated composition analysis
 Computer tomography
 Kidney stone
 Photon-counting CT
 Urolithiasis
K10plus-PPN:1927580781
Verknüpfungen:→ Zeitschrift

Permanenter Link auf diesen Titel (bookmarkfähig):  https://katalog.ub.uni-heidelberg.de/titel/69354005   QR-Code
zum Seitenanfang